Skip to main content
Log in

Iron trafficking as an antimicrobial target

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Iron is essential for the survival of most organisms. Microbial iron acquisition depends on multiple, sometimes complex steps, many of which are not shared by higher eukaryotes. Depriving pathogenic microbes of iron is therefore a potential antimicrobial strategy. The following minireview briefly describes general elements in microbial iron uptake pathways and summarizes some of the current work aiming at their medicinal inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bray PG, Ward SA, O’Neill PM (2005) Quinolines and artemisinin: chemistry, biology and history. In: Sullivan DJ (ed) Malaria: Drugs, disease and post-genomic biology. Springer, New York

    Google Scholar 

  • Brickman TJ, Mcintosh MA (1992) Overexpression and purification of ferric enterobactin esterase from escherichia-coli—demonstration of enzymatic-hydrolysis of enterobactin and its iron complex. J Biol Chem 267(17):12350–12355

    PubMed  CAS  Google Scholar 

  • Britigan BE, Lewis TS, McCormick ML, Wilson ME (1998) Evidence for the existence of a surface receptor(s) for ferric lactoferrin and ferric transferrin associated with the plasma membrane of the protozoan parasite Leishmania donovani. In: Spik G et al (eds) Advances in lactoferrin research. Advances in experimental medicine volume. Springer, New York

    Google Scholar 

  • Brundtland GH (1999) World health organization report on infectious diseases. Available for download: http://www.who.int/whr/2007/en/index.html

  • Bullen JJ, Rogers HJ, Spalding PB, Ward CG (2005) Iron and infection: the heart of the matter. FEMS Immunol Med Microbiol 43(3):325–330. doi:10.1016/j.femsim.2004.11.010

    Article  PubMed  CAS  Google Scholar 

  • Byers BR, Arceneaux JEL (1998) Microbial iron transport: iron acquisition by pathogenic microorganisms. In: metal ions in biological systems. CRC Press, New York

    Google Scholar 

  • Canonne-Hergaux F, Gruenheid S, Govoni G, Gros P (1999) The Nramp1 protein and its role in resistance to infection and macrophage function. Proc Assoc Am Physicians 111(4):283–289. doi:10.1046/j.1525-1381.1999.99236.x

    Article  PubMed  CAS  Google Scholar 

  • Cardo D, Horan T, Andrus M, Dembinski M, Edwards J, Peavy G, Tolson J, Wagner D (2004) National nosocomial infections surveillance (NNIS) system report, January 1992—June 2004, issued October 2004. Am J Infect Control 32:470–485. doi:10.1016/j.ajic.2004.10.001

    Article  Google Scholar 

  • Cendrowski S, MacArthur W, Hanna P (2004) Bacillus anthracis requires siderophore biosynthesis for growth in macrophages and mouse virulence. Mol Microbiol 51(2):407–417. doi:10.1046/j.1365-2958.2003.03861.x

    Article  PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (2006) Healthcare-associated infections (HAIs). Available for download at: http://www.bd.com/hais/resource/

  • Challis GL (2005) A widely distributed bacterial pathway for siderophore biosynthesis independent of nonribosomal peptide synthetases. Chem Bio Chem 6:601–611. doi:10.1002/cbic.200400283

    PubMed  CAS  Google Scholar 

  • Chen Y, Chang H, Lai Y, Pan C, Tsai S, Peng H (2004) Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene 337:189–198. doi:10.1016/j.gene.2004.05.008

    Article  PubMed  CAS  Google Scholar 

  • Crosa JH, Walsh CT (2002) Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol Mol Biol Rev 66(2):223–249. doi:10.1128/MMBR.66.2.223-249.2002

    Article  PubMed  CAS  Google Scholar 

  • Dale SE, Doherty-Kirby A, Lajoie G, Heinrichs DE (2004) Role of siderophore biosynthesis in virulence of Staphylococcus aureus: identification and characterization of genes involved in production of a siderophore. Infect Immun 72(1):29–37. doi:10.1128/IAI.72.1.29-37.2004

    Article  PubMed  CAS  Google Scholar 

  • Dhungana S, Crumbliss AL (2005) Coordination chemistry and redox processes in siderophore-mediated iron transport. Geomicrobiol J 22(3–4):87–98. doi:10.1080/01490450590945870

    Article  CAS  Google Scholar 

  • Donadio S, Staver MJ, McAlpine JB, Swanson SJ, Katz L (1991) Modular organization of genes required for complex polyketide biosynthesis. Science 252(5006):675–679. doi:10.1126/science.2024119

    Article  PubMed  CAS  Google Scholar 

  • Fast B, Kremp K, Boshart M, Steverding D (1999) Iron-dependent regulation of transferrin receptor expression in Trypanosoma brucei. Biochem J 342:691–696. doi:10.1042/0264-6021:3420691

    Article  PubMed  CAS  Google Scholar 

  • Ferreras JA, Ryu JS, Di Lello F, Tan DS, Quadri LEN (2005) Small-molecule inhibition of siderophore biosynthesis in Mycobacterium tuberculosis and Yersinia pestis. Nat Chem Biol 1(1):29–32. doi:10.1038/nchembio706

    Article  PubMed  CAS  Google Scholar 

  • Finking R, Neumuller A, Solsbacher J, Konz D, Kretzschmar G, Schweitzer M, Krumm T, Marahiel MA (2003) Aminoacyl adenylate substrate analogues for the inhibition of adenylation domains of nonribosomal peptide synthetases. Chem Bio Chem 4(9):903–906. doi:10.1002/cbic.200300666

    PubMed  CAS  Google Scholar 

  • Fischbach MA, Lin HN, Liu DR, Walsh CT (2006) How pathogenic bacteria evade mammalian sabotage in the battle for iron. Nat Chem Biol 2(3):132–138. doi:10.1038/nchembio771

    Article  PubMed  CAS  Google Scholar 

  • Forrest AK, Jarvest RL, Mensah LM, O’Hanlon PJ, Pope AJ, Sheppard RJ (2000) Aminoalkyl adenylate and aminoacyl sulfamate intermediate analogues differing greatly in affinity for their cognate Staphylococcus aureus aminoacyl tRNA synthetases. Bioorg Med Chem Lett 10(16):1871–1874. doi:10.1016/S0960-894X(00)00360-7

    Article  PubMed  CAS  Google Scholar 

  • Gobin J, Horwitz MA (1996) Exochelins of Mycobacterium tuberculosis remove iron from human iron-binding proteins and donate iron to mycobactins in the M. tuberculosis cell wall. J Exp Med 183(4):1527–1532

    Article  PubMed  CAS  Google Scholar 

  • Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK (2002) The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell Biol 10(5):1033–1043

    CAS  Google Scholar 

  • Gold HS, Moellering RC (1996) Antimicrobial drug-resistance. N Engl J Med 335:1445–1453. doi:10.1056/NEJM199611073351907

    Article  PubMed  CAS  Google Scholar 

  • Haas H, Eisendle M, Turgeon BG (2008) Siderophores in fungal physiology and virulence. Annu Rev Phytopathol 46:149–187. doi:10.1146/annurev.phyto.45.062806.094338

    Article  PubMed  CAS  Google Scholar 

  • Hersman LE, Huang A, Maurice PA, Forsythe JH (2000) Siderophore production and iron reduction by Pseudomonas mendocina in response to iron deprivation. Geomicrobiol J 17:261–273. doi:10.1080/01490450050192965

    Article  CAS  Google Scholar 

  • Hissen AHT, Wan ANC, Warwas ML, Pinto LJ, Moore MM (2005) The Aspergillus fumigatus siderophore biosynthetic gene sidA, encoding L-ornithine N-5-oxygenase, is required for virulence. Infect Immun 73(9):5493–5503. doi:10.1128/IAI.73.9.5493-5503.2005

    Article  PubMed  CAS  Google Scholar 

  • Holmes MA, Paulsene W, Jide X, Ratledge C, Strong RK (2005) Siderocalin (lcn 2) also binds carboxymycobactins, potentially defending against mycobacterial infections through iron sequestration. Structure 13(1):29–41

    Article  PubMed  CAS  Google Scholar 

  • Hu JD, Miller MJ (1997) Total synthesis of a mycobactin S, a siderophore and growth promoter of Mycobacterium smegmatis, and determination of its growth inhibitory activity against Mycobacterium tuberculosis. J Am Chem Soc 119(15):3462–3468. doi:10.1021/ja963968x

    Article  CAS  Google Scholar 

  • Huynh C, Andrews NW (2008) Iron acquisition within host cells and the pathogenicity of Leishmania. Cell Microbiol 10(2):293–300

    PubMed  CAS  Google Scholar 

  • Johnson L (2008) Iron and siderophores in fungal-host interactions. Mycol Res 112:170–183. doi:10.1016/j.mycres.2007.11.012

    Article  PubMed  CAS  Google Scholar 

  • Kammler M, Schon C, Hantke K (1993) Characterization of the ferrous iron uptake system of escherichia-coli. J Bacteriol 175(19):6212–6219

    PubMed  CAS  Google Scholar 

  • Kang HY, Armstrong SK (1998) Transcriptional analysis of the Bordetella alcaligin siderophore biosynthesis operon. J Bacteriol 180(4):855–861

    PubMed  CAS  Google Scholar 

  • Kleinkauf H, Döhren H (1996) A nonribosomal system of peptide biosynthesis. Eur J Biochem 236(2):335. doi:10.1111/j.1432-1033.1996.00335.x

    Article  PubMed  CAS  Google Scholar 

  • Ko W-C, Paterson DL, Sagnimeni AJ, Hansen DS, Von Gottberg A, Mohapatra S, Casellas JM, Goossens H, Mulazimoglu L, Trenholme G et al (2002) Community-acquired Klebsiella pneumoniae bacteremia: global differences in clinical patterns. Emerg Infect Dis 8(2):160–166

    Article  PubMed  Google Scholar 

  • Kragl C, Schrettl M, Abt B, Sarg B, Lindner HH, Haas H (2007) EstB-mediated hydrolysis of the siderophore triacetylfusarinine C optimizes iron uptake of Aspergillus fumigatus. Eukaryot Cell 6(8):1278–1285. doi:10.1128/EC.00066-07

    Article  PubMed  CAS  Google Scholar 

  • Krishnamurthy G, Vikram R, Singh SB, Patel N, Agarwal S, Mukhopadhyay G, Basu SK, Mukhopadhyay A (2005) Hemoglobin receptor in Leishmania is a hexokinase located in the flagellar pocket. J Biol Chem 280(7):5884–5891. doi:10.1074/jbc.M411845200

    Article  PubMed  CAS  Google Scholar 

  • Lambalot RH, Gehring AM, Flugel RS, Zuber P, La Celle M, Marahiel MA, Reid R, Khosla C, Walsh CT (1996) A new enzyme superfamily—the phosphopantetheinyl transferases. Chem Biol 3(11):923–936. doi:10.1016/S1074-5521(96)90181-7

    Article  PubMed  CAS  Google Scholar 

  • Liu XF, Theil EC (2005) Ferritins: dynamic management of biological iron and oxygen chemistry. Acc Chem Res 3:167–175. doi:10.1021/ar0302336

    Article  CAS  Google Scholar 

  • Marahiel MA, Stachelhaus T, Mootz HD (1997) Modular peptide synthetases involved in nonribosomal peptide synthesis. Chem Rev 97(7):2651–2674. doi:10.1021/cr960029e

    Article  PubMed  CAS  Google Scholar 

  • Matzanke BF, Anemuller S, Schunemann V, Trautwein AX, Hantke K (2004) FhuF, part of a siderophore-reductase system. Biochem NY 43(5):1386–1392. doi:10.1021/bi0357661

    Article  CAS  Google Scholar 

  • May JJ, Kessler N, Marahiel MA, Stubbs MT (2002) Crystal structure of DhbE, an archetype for aryl acid activating domains of modular nonribosomal peptide synthetases. Proc Natl Acad Sci USA 99(19):12120–12125. doi:10.1073/pnas.182156699

    Article  PubMed  CAS  Google Scholar 

  • Mazmanian SK, Skaar EP, Gaspar AH, Humayun M, Gornicki P, Jelenska J, Joachmiak A, Missiakas DM, Schneewind O (2003) Passage of heme-iron across the envelope of Staphylococcus aureus. Science 299:906–909. doi:10.1126/science.1081147

    Article  PubMed  CAS  Google Scholar 

  • Mazoch J, Tesarik R, Sedlacek V, Kucera I, Turanek J (2004) Isolation and biochemical characterization of two soluble iron(III) reductases from Paracoccus denitrificans. Eur J Biochem 271:553–562. doi:10.1046/j.1432-1033.2003.03957.x

    Article  PubMed  CAS  Google Scholar 

  • Meyer JM, Halle F (1992) Ferrisiderohore reductases of pseudomonas. purification, properties and cellular location of the Pseudomonas aeruginosa ferripyoverdine reductase. Eur J Biochem 290:613–620

    Google Scholar 

  • Miethke M, Marahiel MA (2007) Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev 71(3):413–451. doi:10.1128/MMBR.00012-07

    Article  PubMed  CAS  Google Scholar 

  • Miethke M, Bisseret P, Beckering CL, Vignard D, Eustache J, Marahiel MA (2006) Inhibition of aryl acid adenylation domains involved in bacterial siderophore synthesis. FEBS J 273(2):409–419. doi:10.1111/j.1742-4658.2005.05077.x

    Article  PubMed  CAS  Google Scholar 

  • Moody DB, Young DC, Cheng TY, Rosat JP, Roura-mir C, O’Connor PB, Zajonc DM, Walz A, Miller MJ, Levery SB et al (2004) T cell activation by lipopeptide antigens. Science 303(5657):527–531. doi:10.1126/science.1089353

    Article  PubMed  CAS  Google Scholar 

  • Nelson AL, Barasch JM, Bunte RM, Weiser JN (2005) Bacterial colonization of nasal mucosa induces expression of siderocalin, an iron-sequestering component of innate immunity. Cell Microbiol 7(10):1404–1417. doi:10.1111/j.1462-5822.2005.00566.x

    Article  PubMed  CAS  Google Scholar 

  • Neres J, Labello NP, Somu RV, Boshoff HI, Wilson DJ, Vannada J, Chen L, Barry CE, Bennett EM, Aldrich CC (2008) Inhibition of siderophore biosynthesis in Mycobacterium tuberculosis with nucleoside bisubstrate analogues: structure-activity relationships of the nucleobase domain of 5 ‘-O-[N-(salicyl)sulfamoyl]adenosine. J Med Chem 51(17):5349–5370. doi:10.1021/jm800567v

    Article  PubMed  CAS  Google Scholar 

  • Pawelek PD, Croteau N, Ng-Thow-Hing C, Khursigara CM, Moiseeva N, Allaire M, Coulton JW (2006) Structure of TonB in complex with FhuA, E-coli outer membrane receptor. Science 312(5778):1399–1402. doi:10.1126/science.1128057

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer E, Pavela-Vrancic M, von Doehren H, Kleinkauf H (1995) Characterization of tyrocidine synthetase 1 (TY1): requirement of posttranslational modification for peptide biosynthesis. Biochemistry 34(22):7450–7459. doi:10.1021/bi00022a019

    Article  PubMed  CAS  Google Scholar 

  • Philpott CC (2006) Iron uptake in fungi: a system for every source. Biochim Et Biophys Acta-Molecular Cell Res 1763(7):636–645. doi:10.1016/j.bbamcr.2006.05.008

    Article  CAS  Google Scholar 

  • Qiao C, Wilson DJ, Bennett EM, Aldrich CC (2007a) A mechanism-based aryl carrier protein/thiolation domain affinity probe. J Am Chem Soc 129(20):6350–6351. doi:10.1021/ja069201e

    Article  PubMed  CAS  Google Scholar 

  • Qiao CH, Gupte A, Boshoff HI, Wilson DJ, Bennett EM, Somu RV, Barry CE, Aldrich CC (2007b) 5’-O-[(N-acyl)sulfamoyl]adenosines as antitubercular agents that inhibit MbtA: an adenylation enzyme required for siderophore biosynthesis of the mycobactins. J Med Chem 50(24):6080–6094. doi:10.1021/jm070905o

    Article  PubMed  CAS  Google Scholar 

  • Quadri LE (2000) Assembly of aryl-capped siderophores by modular peptide synthetases and polyketide synthases. Mol Microbiol 37:1–12

    Article  PubMed  CAS  Google Scholar 

  • Ratledge C, Dover LG (2000) Iron metabolism in pathogenic bacteria. Annu Rev Microbiol 54:881–941. doi:10.1146/annurev.micro.54.1.881

    Article  PubMed  CAS  Google Scholar 

  • Roosenberg JM, Lin YM, Lu Y, Miller MJ (2000) Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr Med Chem 7(2):159–197

    PubMed  CAS  Google Scholar 

  • Schlumbohm W, Stein T, Ullrich C, Vater J, Krause M, Marahiel M, Kruft V, Wittmann-Liebold B (1991) An active serine is involved in covalent substrate amino acid binding at each reaction center of gramicidin S synthetase. J Biol Chem 266(34):23135–23141

    PubMed  CAS  Google Scholar 

  • Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, Arst HN, Haynes K, Haas H (2004) Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigates virulence. J Exp Med 200(9):1213–1219. doi:10.1084/jem.20041242

    Article  PubMed  CAS  Google Scholar 

  • Schroder I, Johnson E, De Vries S (2003) Microbial ferric iron reductases. FEMS Microbiol Rev 27:427–447. doi:10.1016/S0168-6445(03)00043-3

    Article  PubMed  CAS  Google Scholar 

  • Searle S, Bright NA, Roach TIA, Atkinson PGP, Barton CH, Meloen RH, Blackwell JM (1998) Localisation of Nramp1 in macrophages: modulation with activation and infection. J Cell Sci 111:2855–2866

    PubMed  CAS  Google Scholar 

  • Skaar EP, Gaspar AH, Schneewind O (2004) IsdG and IsdI, heme-degrading enzymes in the cytoplasm of staphylococcus aureus. J Biol Chem 279(1):436–443. doi:10.1074/jbc.M307952200

    Article  PubMed  CAS  Google Scholar 

  • Somu RV, Boshoff H, Qiao CH, Bennett EM, Barry CE, Aldrich CC (2006a) Rationally designed nucleoside antibiotics that inhibit siderophore biosynthesis of Mycobacterium tuberculosis. J Med Chem 49(1):31–44. doi:10.1021/jm051060o

    Article  PubMed  CAS  Google Scholar 

  • Somu RV, Wilson DJ, Bennett EM, Boshoff HI, Celia L, Beck BJ, Barry CE, Aldrich CC (2006b) Antitubercular nucleosides that inhibit siderophore biosynthesis: SAR of the glycosyl domain. J Med Chem 49(26):7623–7635. doi:10.1021/jm061068d

    Article  PubMed  CAS  Google Scholar 

  • Sutak R, Lesuisse E, Tachezy J, Richardson DR (2008) Crusade for iron: iron uptake in unicellular eukaryotes and its significance for virulence. Trends Microbiol 16(6):261–268. doi:10.1016/j.tim.2008.03.005

    Article  PubMed  CAS  Google Scholar 

  • van Luenen H, Kieft R, Mussmann R, Engstler M, ter Riet B, Borst P (2005) Trypanosomes change their transferrin receptor expression to allow effective uptake of host transferrin. Mol Microbiol 58(1):151–165. doi:10.1111/j.1365-2958.2005.04831.x

    Article  PubMed  CAS  Google Scholar 

  • Vannada J, Bennett EM, Wilson DJ, Boshoff HI, Barry CE, Aldrich CC (2006) Design, synthesis, and biological evaluation of b-ketosulfanamide adenylation inhibitors as potential antitubercular agents. Org Lett 8(21):4707–4710. doi:10.1021/ol0617289

    Article  PubMed  CAS  Google Scholar 

  • Vasil ML, Ochsner UA (1999) The response of Pseudomonas aeruginosa to iron: genetics, biochemistry and virulence. Mol Microbiol 34(3):399–413. doi:10.1046/j.1365-2958.1999.01586.x

    Article  PubMed  CAS  Google Scholar 

  • Vetting MW, de Carvalho LPS, Yu M, Hegde SS, Magnet S, Roderick SL, Blanchard JS (2005) Structure and functions of the GNAT superfamily of acetyltransferases. Arch Biochem Biophys 433(1):212–226. doi:10.1016/j.abb.2004.09.003

    Article  PubMed  CAS  Google Scholar 

  • von Dohren H, Keller U, Vater J, Zocher R (1997) Multifunctional peptide synthetases. Chem Rev 97(7):2675–2706. doi:10.1021/cr9600262

    Article  Google Scholar 

  • Walsh CT (2000) Molecular mechanisms that confer antibacterial drug resistance. Nature 406:775–781. doi:10.1038/35021219

    Article  PubMed  CAS  Google Scholar 

  • Wegele R, Tasler R, Zeng YH, Rivera M, Frankenberg-Dinkel N (2004) The heme oxygenase(s)-phytochrome system of Pseudomonas aeruginosa. J Biol Chem 279(44):45791–45802. doi:10.1074/jbc.M408303200

    Article  PubMed  CAS  Google Scholar 

  • Weinberg ED (1998) Patho-ecological implications of microbial acquisition of host iron. Revs Med Microbiol 9(3):171–178

    Google Scholar 

  • Weinberg ED, Weinberg GA (1995) The role of iron in infection. Curr Opin Infect Dis 8(3):164–169. doi:10.1097/00001432-199506000-00004

    Article  Google Scholar 

  • WHO (2005) Global tuberculosis control: surveillance, planning, financing. WHO report 2005. Geneva, world health organization (WHO/HTM/TB/2005.349)

  • Wilson ME, Lewis TS, Miller MA, McCormick ML, Britigan BE (2002) Leishmania chagasi: uptake of iron bound to lactoferrin or transferrin requires an iron reductase. Exp Parasitol 100(3):196–207. doi:10.1016/S0014-4894(02)00018-8

    Article  PubMed  CAS  Google Scholar 

  • Wyllie S, Seu P, Goss JA (2002) The natural resistance-associated macrophage protein 1 Slc11a1 (formerly Nramp1) and iron metabolism in macrophages. Microbes Infect 4(3):351–359. doi:10.1016/S1286-4579(02)01548-4

    Article  PubMed  CAS  Google Scholar 

  • Yang J et al (2002) Iron delivery pathway mediated by a lipocalin. Mol Cell Biol 10(5):1045–1056

    CAS  Google Scholar 

  • Yu VL, Hansen DS, Ko WC, Sagnimeni AJ, Klugman KP, Von Gottberg A, Goossens H, Wagener MM, Benedi VJ (2007) Virulence characteristics of Klebsiella and clinical manifestations of K. pneumoniae bloodstream infections. Emerging Infectious Diseases 13(7): available for download at http://www.cdc.gov/EID/content/13/7/986.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. DuBois.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frederick, R.E., Mayfield, J.A. & DuBois, J.L. Iron trafficking as an antimicrobial target. Biometals 22, 583–593 (2009). https://doi.org/10.1007/s10534-009-9236-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-009-9236-1

Keywords

Navigation