Skip to main content

Advertisement

Log in

Depletion of vesicular zinc in dorsal horn of spinal cord causes increased neuropathic pain in mice

  • Published:
BioMetals Aims and scope Submit manuscript

Abstract

Zinc enriched (ZEN) neurons and terminals are abundant in the rodent spinal cord. Zinc ions have been suggested to modulate the excitability of primary afferent fibers believed to be important in nociceptive transmission. To test the hypothesis that vesicular zinc concentration is related to neuropathic pain we applied Chung’s rodent pain model on BALB/c mice, and traced zinc transporter 3 (ZnT3) proteins and zinc ions with immunohistochemistry and autometallography (AMG), respectively. Under anesthesia the left fifth lumbar spinal nerve was ligated in male mice in order to produced neuropathic pain. The animals were then sacrificed 5 days later. The ZnT3 immunoreactivity was found to have decreased significantly in dorsal horn of fourth, fifth, and sixth lumbar segments. In parallel with the depressed ZnT3 immunoreactivity the amount of vesicular zinc decreased perceptibly in superficial gray matters of especially layer I-IV of the same segments. The transection-induced reduction of vesicular zinc in ZEN terminals of the dorsal horn was synchronic to reduced pain threshold, as measured by von Frey method. In a separate study, we observed intensive zinc selenite precipitation in somata of the smaller spinal ganglion cell, but 5 days after spinal nerve transection zinc precipitation was also found in the lager ganglion cells. The present results indicate that zinc may be involved in pain mechanism in the spinal ganglion level. These results support the hypothesis that vesicular zinc might have a modulatory role for neuropathic pain. Thus, increased pain sensitivity might be related to reduce vesicular zinc level in the dorsal spinal gray matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aniksztejn L, Charton G, Ben-Ari Y (1987) Selective release of endogenous zinc from the hippocampal mossy fibers in situ. Brain Res 404:58–64

    Article  PubMed  CAS  Google Scholar 

  • Assaf SY, Chung SH (1984) Release of endogenous Zn2+ from brain tissue during activity. Nature 308:734–736

    Article  PubMed  CAS  Google Scholar 

  • Beaulieu C, Dyck R, Cynader M (1992) Enrichment of glutamate in zinc-containing terminals of the cat visual cortex. Neuroreport 3:861–864

    Article  PubMed  CAS  Google Scholar 

  • Busselberg D, Michael D, Evans ML, Carpenter DO, Haas HL (1992) Zinc (Zn2+) blocks voltage gated calcium channels in cultured rat dorsal root ganglion cells. Brain Res 593:77–81

    Article  PubMed  CAS  Google Scholar 

  • Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL (1994) Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 53:55–63

    Article  PubMed  CAS  Google Scholar 

  • Choi YB, Lipton SA (1999) Identification and mechanism of action of two histidine residues underlying high-affinity Zn2+ inhibition of the NMDA receptor. Neuron 23:171–180

    Article  PubMed  CAS  Google Scholar 

  • Christensen MK, Frederickson CJ (1998) Zinc-containing afferent projections to the rat corticomedial amygdaloid complex: a retrograde tracing study. J Comp Neurol 400:375–390

    Article  PubMed  CAS  Google Scholar 

  • Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD (1999) Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci USA 96:1716–1721

    Article  PubMed  CAS  Google Scholar 

  • Danscher G (1982) Exogenous selenium in the brain. A histochemical technique for light and electron microscopical localization of catalytic selenium bonds. Histochemistry 76:281–293

    Article  PubMed  CAS  Google Scholar 

  • Danscher G (1996) The autometallographic zinc-sulphide method. A new approach involving in vivo creation of nanometer-sized zinc sulphide crystal lattices in zinc-enriched synaptic and secretory vesicles. Histochem J 28:361–373

    Article  PubMed  CAS  Google Scholar 

  • Danscher G, Stoltenberg M (2005) Zinc-specific autometallographic in vivo selenium methods: tracing of zinc-enriched (ZEN) terminals, ZEN pathways, and pools of zinc ions in a multitude of other ZEN cells. J Histochem Cytochem 53:141–153

    Article  PubMed  CAS  Google Scholar 

  • Danscher G, Howell G, Perez-Clausell J, Hertel N (1985) The dithizone, Timm’s sulphide silver and the selenium methods demonstrate a chelatable pool of zinc in CNS. A proton activation (PIXE) analysis of carbon tetrachloride extracts from rat brains and spinal cords intravitally treated with dithizone. Histochemistry 83:419–422

    Article  PubMed  CAS  Google Scholar 

  • Danscher G, Stoltenberg M, Bruhn M, Sondergaard C, Jensen D (2004) Immersion autometallography: histochemical in situ capturing of zinc ions in catalytic zinc-sulfur nanocrystals. J Histochem Cytochem 52:1619–1625

    Article  PubMed  CAS  Google Scholar 

  • Danscher G, Jo SM, Varea E, Wang Z, Cole TB, Schroder HD (2001) Inhibitory zinc-enriched terminals in mouse spinal cord. Neuroscience 105:941–947

    Article  PubMed  CAS  Google Scholar 

  • Frederickson CJ, Danscher G (1990) Zinc-containing neurons in hippocampus and related CNS structures. Prog Brain Res 83:71–84

    Article  PubMed  CAS  Google Scholar 

  • Frederickson CJ, Kasarskis EJ, Ringo D, Frederickson RE (1987) A quinoline fluorescence method for visualizing and assaying the histochemically reactive zinc (bouton zinc) in the brain. J Neurosci Methods 20:91–103

    Article  PubMed  CAS  Google Scholar 

  • Frederickson CJ, Suh SW, Silva D, Thompson RB (2000) Importance of zinc in the central nervous system: the zinc-containing neuron. J Nutr 130:1471S–1483S

    PubMed  CAS  Google Scholar 

  • Gingrich KJ, Burkat PM (1998) Zn2+ inhibition of recombinant GABAA receptors: an allosteric, state-dependent mechanism determined by the gamma-subunit. J Physiol 506(Pt 3):609–625

    Article  PubMed  CAS  Google Scholar 

  • Holm IE, Andreasen A, Danscher G, Perez-Clausell J, Nielsen H (1988) Quantification of vesicular zinc in the rat brain. Histochemistry 89:289–293

    Article  PubMed  CAS  Google Scholar 

  • Howell GA, Frederickson CJ (1990) A retrograde transport method for mapping zinc-containing fiber systems in the brain. Brain Res 515:277–286

    Article  PubMed  CAS  Google Scholar 

  • Howell GA, Welch MG, Frederickson CJ (1984) Stimulation-induced uptake and release of zinc in hippocampal slices. Nature 308:736–738

    Article  PubMed  CAS  Google Scholar 

  • Jo SM, Danscher G, Daa Schroder H, Won MH, Cole TB (2000) Zinc-enriched (ZEN) terminals in mouse spinal cord: immunohistochemistry and autometallography. Brain Res 870:163–169

    Article  PubMed  CAS  Google Scholar 

  • Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    Article  PubMed  CAS  Google Scholar 

  • Kozma M, Szerdahelyi P, Kasa P (1981) Histochemical detection of zinc and copper in various neurons of the central nervous system. Acta Histochem 69:12–17

    PubMed  CAS  Google Scholar 

  • Larson AA, Kitto KF (1997) Manipulations of zinc in the spinal cord, by intrathecal injection of zinc chloride, disodium-calcium-EDTA, or dipicolinic acid, alter nociceptive activity in mice. J Pharmacol Exp Ther 282:1319–1325

    PubMed  CAS  Google Scholar 

  • Larson AA, Kitto KF (1999) Chelation of zinc in the extracellular area of the spinal cord, using ethylenediaminetetraacetic acid disodium-calcium salt or dipicolinic acid, inhibits the antinociceptive effect of capsaicin in adult mice. J Pharmacol Exp Ther 288:759–765

    PubMed  CAS  Google Scholar 

  • Larson AA, Giovengo SL, Shi Q, Velazquez RA, Kovacs KJ (2000) Zinc in the extracellular area of the central nervous system is necessary for the development of kainic acid-induced persistent hyperalgesia in mice. Pain 86:177–184

    Article  PubMed  CAS  Google Scholar 

  • Li C, Peoples RW, Weight FF (1997) Inhibition of ATP-activated current by zinc in dorsal root ganglion neurones of bullfrog. J Physiol 505(Pt 3):641–653

    Article  PubMed  CAS  Google Scholar 

  • Liu T, Walker JS, Tracey DJ (1999) Zinc alleviates thermal hyperalgesia due to partial nerve injury. Neuroreport 10:1619–1623

    Article  PubMed  CAS  Google Scholar 

  • Ma JY, Zhao ZQ (2001) The effects of Zn2+ on long-term potentiation of C fiber-evoked potentials in the rat spinal dorsal horn. Brain Res Bull 56:575–579

    Article  PubMed  CAS  Google Scholar 

  • Mancini M, Ricci A, Amenta F (1992) Age-related changes in sulfide-silver staining in the rat neostriatum: a quantitative histochemical study. Neurobiol Aging 13:501–504

    Article  PubMed  CAS  Google Scholar 

  • Martinez-Guijarro FJ, Soriano E, Del Rio JA, Lopez-Garcia C (1991) Zinc-positive boutons in the cerebral cortex of lizards show glutamate immunoreactivity. J Neurocytol 20:834–843

    Article  PubMed  CAS  Google Scholar 

  • Mook Jo S, Kuk Kim Y, Wang Z, Danscher G (2002) Retrograde tracing of zinc-enriched (ZEN) neuronal somata projecting to the olfactory bulb. Brain Res 956:230–235

    Article  PubMed  CAS  Google Scholar 

  • Palmiter RD, Cole TB, Quaife CJ, Findley SD (1996) ZnT-3, a putative transporter of zinc into synaptic vesicles. Proc Natl Acad Sci USA 93:14934–14939

    Article  PubMed  CAS  Google Scholar 

  • Paoletti P, Ascher P, Neyton J (1997) High-affinity zinc inhibition of NMDA NR1-NR2A receptors. J Neurosci 17:5711–5725

    PubMed  CAS  Google Scholar 

  • Perez-Clausell J, Danscher G (1985) Intravesicular localization of zinc in rat telencephalic boutons. A histochemical study. Brain Res 337:91–98

    Article  PubMed  CAS  Google Scholar 

  • Perez-Clausell J, Danscher G (1986) Release of zinc sulphide accumulations into synaptic clefts after in vivo injection of sodium sulphide. Brain Res 362:358–361

    Article  PubMed  CAS  Google Scholar 

  • Peters S, Koh J, Choi DW (1987) Zinc selectively blocks the action of N-methyl-D-aspartate on cortical neurons. Science 236:589–593

    Article  PubMed  CAS  Google Scholar 

  • Quinta-Ferreira ME, Matias CM (2005) Tetanically released zinc inhibits hippocampal mossy fiber calcium, zinc and synaptic responses. Brain Res 1047:1–9

    Article  PubMed  CAS  Google Scholar 

  • Rubio ME, Juiz JM (1998) Chemical anatomy of excitatory endings in the dorsal cochlear nucleus of the rat: differential synaptic distribution of aspartate aminotransferase, glutamate, and vesicular zinc. J Comp Neurol 399:341–358

    Article  PubMed  CAS  Google Scholar 

  • Safieh-Garabedian B, Poole S, Allchorne A, Kanaan S, Saade N, Woolf CJ (1996) Zinc reduces the hyperalgesia and upregulation of NGF and IL-1 beta produced by peripheral inflammation in the rat. Neuropharmacology 35:599–603

    Article  PubMed  CAS  Google Scholar 

  • Schroder HD (1977) Sulfide silver architectonics of rat, cat, and guinea pig spinal cord. A light microscopic study with Timm’s method for demonstration of heavy metals. Anat Embryol (Berl) 150:251–267

    Article  CAS  Google Scholar 

  • Schroder HD (1979) Sulfide silver stainability of a type of bouton in spinal cord motoneuron neuropil: an electron microscopic study with Timm’s method for demonstration of heavy metals. J Comp Neurol 186:439–450

    Article  PubMed  CAS  Google Scholar 

  • Schroder HD, Danscher G, Jo SM, Su H (2000) Zinc-enriched boutons in rat spinal cord. Brain Res 868:119–122

    Article  PubMed  CAS  Google Scholar 

  • Smeets WJ, Perez-Clausell J, Geneser FA (1989) The distribution of zinc in the forebrain and midbrain of the lizard Gekko gecko. A histochemical study. Anat Embryol (Berl) 180:45–56

    Article  CAS  Google Scholar 

  • Sorensen JC, Slomianka L, Christensen J, Zimmer J (1995) Zinc-containing telencephalic connections to the rat striatum: a combined Fluoro-Gold tracing and histochemical study. Exp Brain Res 105:370–382

    PubMed  CAS  Google Scholar 

  • Takeda A, Hirate M, Tamano H, Oku N (2003) Release of glutamate and GABA in the hippocampus under zinc deficiency. J Neurosci Res 72:537–542

    Article  PubMed  CAS  Google Scholar 

  • Takeda A, Minami A, Seki Y, Oku N (2004) Differential effects of zinc on glutamatergic and GABAergic neurotransmitter systems in the hippocampus. J Neurosci Res 75:225–229

    Article  PubMed  CAS  Google Scholar 

  • Vogt K, Mellor J, Tong G, Nicoll R (2000) The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron 26:187–196

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Li JY, Dahlstrom A, Danscher G (2001a) Zinc-enriched GABAergic terminals in mouse spinal cord. Brain Res 921:165–172

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Danscher G, Mook Jo S, Shi Y, Daa Schroder H (2001b) Retrograde tracing of zinc-enriched (ZEN) neuronal somata in rat spinal cord. Brain Res 900:80–87

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Stoltenberg M, Huang L, Danscher G, Dahlstrom A, Shi Y, Li JY (2005) Abundant expression of zinc transporters in Bergman glia of mouse cerebellum. Brain Res Bull 64:441–448

    Article  PubMed  CAS  Google Scholar 

  • Wenzel HJ, Cole TB, Born DE, Schwartzkroin PA, Palmiter RD (1997) Ultrastructural localization of zinc transporter-3 (ZnT-3) to synaptic vesicle membranes within mossy fiber boutons in the hippocampus of mouse and monkey. Proc Natl Acad Sci USA 94:12676–12681

    Article  PubMed  CAS  Google Scholar 

  • Westbrook GL, Mayer ML (1987) Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature 328:640–643

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Smart TG (1994) Modulation of long-term potentiation in rat hippocampal pyramidal neurons by zinc. Pflugers Arch 427:481–486

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Won Suh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jo, S.M., Danscher, G., SchrØder, H.D. et al. Depletion of vesicular zinc in dorsal horn of spinal cord causes increased neuropathic pain in mice. Biometals 21, 151–158 (2008). https://doi.org/10.1007/s10534-007-9103-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10534-007-9103-x

Keywords

Navigation