Skip to main content

Advertisement

Log in

Atmospheric deposition and precipitation are important predictors of inorganic nitrogen export to streams from forest and grassland watersheds: a large-scale data synthesis

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Previous studies have evaluated how changes in atmospheric nitrogen (N) inputs and climate affect stream N concentrations and fluxes, but none have synthesized data from sites around the globe. We identified variables controlling stream inorganic N concentrations and fluxes, and how they have changed, by synthesizing 20 time series ranging from 5 to 51 years of data collected from forest and grassland dominated watersheds across Europe, North America, and East Asia and across four climate types (tropical, temperate, Mediterranean, and boreal) using the International Long-Term Ecological Research Network. We hypothesized that sites with greater atmospheric N deposition have greater stream N export rates, but that climate has taken a stronger role as atmospheric deposition declines in many regions of the globe. We found declining trends in bulk ammonium and nitrate deposition, especially in the longest time-series, with ammonium contributing relatively more to atmospheric N deposition over time. Among sites, there were statistically significant positive relationships between (1) annual rates of precipitation and stream ammonium and nitrate fluxes and (2) annual rates of atmospheric N inputs and stream nitrate concentrations and fluxes. There were no significant relationships between air temperature and stream N export. Our long-term data shows that although N deposition is declining over time, atmospheric N inputs and precipitation remain important predictors for inorganic N exported from forested and grassland watersheds. Overall, we also demonstrate that long-term monitoring provides understanding of ecosystems and biogeochemical cycling that would not be possible with short-term studies alone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

We will make our data publicly available through the Environmental Data Initiative (EDI; https://environmentaldatainitiative.org) prior to publication. The EDI Data Repository issues a full dataset citation, including a DOI.

Code availability

We will make our code publicly available through the Environmental Data Initiative (EDI; https://environmentaldatainitiative.org) prior to publication. The EDI Data Repository issues a full dataset citation, including a DOI.

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39:378–386

    Article  Google Scholar 

  • Aber J, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems: hypotheses revisited. Bioscience 48:921–934

    Article  Google Scholar 

  • Aber JD, Goodale CL, Ollinger SV, Smith ML, Magill AH, Martin ME, Hallett RA, Stoddard JL (2003) Is nitrogen deposition altering the nitrogen status of northeastern forests? Bioscience 53:375–389

    Article  Google Scholar 

  • Adams MB, Knoepp JD, Webster JR (2014) Inorganic nitrogen retention by watersheds at Fernow Experimental Forest and Coweeta Hydrologic Laboratory. Soil Sci Soc Am J 78:S84–S94

    Article  Google Scholar 

  • Ahrends B, Meesenburg H, Döring C, Jansen M (2010) A spatio-temporal modelling approach for assessment of management effects in forest catchments. IAHS Publ 336:32–37

    Google Scholar 

  • Ávila A, Molowny-Horas R, Camarero L (2020) Stream chemistry response to changing nitrogen and sulfur deposition in two mountain areas in the Iberian Peninsula. Sci Total Environ 711. https://doi.org/10.1016/j.scitotenv.2019.134697

    Article  Google Scholar 

  • Baron JS, Hall EK, Nolan BT, Finlay JC, Bernhardt ES, Harrison JA, Chan F, Boywer EW (2013) The interactive effects of excess reactive nitrogen and climate change on aquatic ecosystems and water resources of the United States. Biogeochemistry 114:71–92

    Article  Google Scholar 

  • Bernhardt ES, Likens GE, Hall RO, Buso DC, Fisher SG, Burton TM, Meyer JL, McDowell WH, Mayer MS, Bowden WB, Findlay SEG, Macneale KH, Stelzer RS, Lowe WH (2005) Can’t see the forest for the stream? In-stream processing and terrestrial nitrogen exports. Bioscience 55:219–230

    Article  Google Scholar 

  • Bernot MJ, Dodds WK (2005) Nitrogen retention, removal, and saturation in lotic ecosystems. Ecosystems 8:442–453

    Article  Google Scholar 

  • Bogena HR, Montzka C, Huisman JA, Graf A, Schmidt M, Stockinger M, von Hebel C, Hendricks-Franssen HJ, van der Kruk J, Tappe W, Lücke A, Baatz R, Bol R, Groh J, Pütz T, Jakobi J, Kunkel R, Sorg J, Vereecken H (2018) The TERENO-Rur hydrological observatory: a multiscale multi-compartment research platform for the advancement of hydrological science. Vadose Zone J 17:1–22. https://doi.org/10.2136/vzj2018.03.0055

    Article  Google Scholar 

  • Braun S, Schindler C, Rihm B (2017) Growth trends of beech and Norway spruce in Switzerland. The role of nitrogen deposition, ozone, mineral nutrition and climate. Sci Total Environ 599–600:637–646

    Article  Google Scholar 

  • Causse J, Baures E, Mery Y, Jung A, Thomas O (2015) Variability of N export in water: a review. Environ Sci Technol 45:2245–2281

    Article  Google Scholar 

  • Chang CT, Wang LJ, Huang JC, Liu CP, Wang CP, Lin NH, Wang L, Lin TC (2017) Precipitation controls on nutrient budgets in subtropical and tropical forests and the implications under changing climate. Adv Water Resour 103:44–50

    Article  Google Scholar 

  • Condit R, Engelbrecht BMJ, Pino D, Perez R, Turner BL (2013) Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc Natl Acad Sci USA 110:5064–5068

    Article  Google Scholar 

  • Craine JM, Elmore AJ, Wang L, Aranibar J, Bauters M, Boeckx P, Crowley BE, Dawes MA, Delzon S, Fajardo A, Fang Y, Fujiyoshi L, Gray A, Guerrieri R, Gundale MJ, Hawke DJ, Hietz P, Jonard M, Kearsley E, Kenzo T, Makarov M, Marañón-Jiménez S, McGlynn TP, McNeil BE, Mosher SG, Nelson DM, Peri PL, Roggy JC, Sanders-DeMott R, Song M, Szpak P, Templer PH, Colff DV, Werner C, Xu X, Yang Y, Yu G, Zmudczyńska-Skarbek K (2018) Isotopic evidence for oligotrophication of terrestrial ecosystems. Nat Ecol Evol 2:1735–1744

    Article  Google Scholar 

  • Curcoll R, Camarero L, Bacardit M, Àgueda A, Grossi C, Gacia E, Font A, Morguí JA (2019) Atmospheric carbon dioxide variability at Aigüestortes, Central Pyrenees, Spain. Reg Environ Chang 19:313–324

    Article  Google Scholar 

  • Daufresne M, Lengfellner K, Sommer U (2009) Global warming benefits the small in aquatic ecosystems. Proc Natl Acad Sci 106:12788–12793

    Article  Google Scholar 

  • Dirnböck T, Foldal C, Djukic I, Kobler J, Haas E, Kiese R, Kitzler B (2017) Historic nitrogen deposition determines future climate change effects on nitrogen retention in temperate forests. Clim Chang 1:15

    Google Scholar 

  • Dirnböck T, Pröll G, Austnes K, Beloica J, Beudert B, Canullo R, De Marco A, Fornasier MF, Futter M, Goergen K, Grandin U, Holmberg M, Lindroos A, Mirtl M, Neirynck J, Pecka T, Maileena N, Nordbakken J, Posch M, Reinds G, Rowe EC, Salemaa M, Scheuschner T, Starlinge F, Uziębło AK, Valinia S, Weldon J, Wamelink WGW, Forsius M (2018) Currently legislated decreases in nitrogen deposition will yield only limited plant species recovery in European forests. Environ Res Lett 13(12):125010

    Article  Google Scholar 

  • Dirnböck T, Haase P, Mirtl M, Pauw J, Templer PH (2019) Contemporary international long-term ecological research (ILTER)—from Biogeoscience to socio-ecology and biodiversity research. Reg Environ Chang 19:309–311

    Article  Google Scholar 

  • Dirnböck T, Brielmann H, Djukic I, Geiger S, Hartmann A, Humer F, Kobler J, Kralik M, Liu Y, Mirtl M, Proll G (2020) Long- and short-term inorganic nitrogen runoff from a karst catchment in Austria. Forests 11:1112. https://doi.org/10.3390/f11101112

    Article  Google Scholar 

  • Dise NB, Wright RF (1995) Nitrogen leaching from European forests in relation to nitrogen deposition. For Ecol Manag 71:153–161

    Article  Google Scholar 

  • Dise NB, Rothwell JJ, Gauci V, van der Salm C, de Vries W (2009) Predicting dissolved inorganic nitrogen leaching in European forests using two independent variables. Sci Total Environ 407:1798–1808

    Article  Google Scholar 

  • Dodds WK (2020) NWC01 stream water chemistry for the King’s creek drainage basin on Konza Prairie. Environ Data Initiat. https://doi.org/10.6073/pasta/bb6b065e5b25234dd1bb80ff476933e0

    Article  Google Scholar 

  • Etzold S, Ferretti M, Reinds GJ, Solberg S, Gessler A, Waldner P, Schaub M, Simpson D, Benham S, Hansen K, Ingerslev M, Jonard M, Karlsson PE, Lindroos A, Marchetto A, Manninger M, Meessenburg H, Merila P, de Vries W (2020) Nitrogen deposition is the most important environmental driver of growth of pure, even-aged and managed European forests. For Ecol Manag 458:117762

    Article  Google Scholar 

  • European Monitoring and Evaluation Programme (EMEP) Status Report (2021) Transboundary particulate matter, photo-oxidants, acidifying and eutrophying components. Joint MSC-W & CCC & CEIP Report.

  • Figueroa-Rangel BL, Olvera-Vargas M (2019) Long-term responses of mountain forests to environmental change in West-Central Mexico. Reg Environ Chang 19:349–361

    Article  Google Scholar 

  • Fisk MC, Zak DR, Crow TR (2002) Nitrogen storage and cycling in old- and second-growth northern hardwood forests. Ecology 83:73–87

    Article  Google Scholar 

  • Fukuzawa K, Fuyuk S, Hideaki S, Tatsuya K, Chikara K, Takanishi T, Hayakashi S, Hirano Y, Mamiya W, Yabuhara Y, Sakai R, Sugiyama H, Masumoto H, Fukuzawa N, Takeda T, Morita H, Yamanouchi M, Hasegawa J, Yoshida T (2020) Stream water quality in relation to watershed-scale practical forest management in a cool-temperate natural forest in northern Japan. Ecol Res 35:742–749

    Article  Google Scholar 

  • Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356

    Article  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. https://doi.org/10.1126/science.1136674

    Article  Google Scholar 

  • Ge B, Itahashi S, Sato K, Xu D, Wang J, Fan F, Tan Q, Fu JS, Wang X, Yamaji K, Nagashima T, Li J, Kajino M, Liao H, Zhang M, Wang Z, Li M, Woo J-H, Kurokawa J, Pan Y, Wu Q, Liu X, Wang Z (2020) Model inter-comparison study for Asia (MICS-Asia) phase III: multi-model comparison of reactive nitrogen deposition over China. Atmos Chem Phys 20:10587–10610

    Article  Google Scholar 

  • Germ M, Remec-Rekar Š, Gaberščik A (2019) Weather conditions and chlorophyll concentrations determine long-term macrophyte community dynamics of Lake Bohinj (Slovenia). Reg Environ Chang 19:339–348

    Article  Google Scholar 

  • Greaver TL, Clark CM, Compton JE, Vallano D, Talhelm AF, Weaver CP, Band LE, Baron JS, Davidson EA, Tague CL, Felker-Quinn E, Lynch JA, Herrick JD, Liu L, Goodale CL, Novak KJ, Haeuber RA (2016) Key ecological responses to nitrogen are altered by climate change. Nat Clim Chang 6:836–843

    Article  Google Scholar 

  • Groffman P, Driscoll C, Duran J, Campbell J, Christenson L, Fahey T, Fisk M, Fuss C, Likens G, Lovett G, Rustad L, Templer PH (2018) Nitrogen oligotropication in northern hardwood forests. Biogeochemistry 141:523–539

    Article  Google Scholar 

  • Haase P, Tonkin JD, Stoll S, Burkhard B, Frenzel M, Geijzendorffer IR, Häuser C, Klotz S, Kühn I, McDowell WH, Mirtl M, Müller F, Musche M, Penner J, Zacharias S, Schmeller DS (2018) The next generation of site-based long-term ecological monitoring: linking essential biodiversity variables and ecosystem integrity. Sci Total Environ 613–614:1376–1384

    Article  Google Scholar 

  • Hamed KH, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182–196

    Article  Google Scholar 

  • Hauken M, M Stenrød, M Bechmann, J Deelstra, HO Eggestad et al (2020) Jord- og vannovervåking i landbruket (JOVA). Feltrapporter fra programmet i 2017. NIBIO RAPPORT 6(126).

  • Hayhoe K, Wuebbles DJ, Easterling DR, Fahey DW, Doherty S, Kossin J, Sweet W, Vose R, Wehner M (2018) Our changing climate. In: Reidmiller DR, Avery CW, Easterling DR, Kunkel KE, Lewis KLM, Maycock TK, Stewart BC (eds) vol II. U.S Global Change Research Program, Washington, DC, pp 72–144

  • HBWE Record (HBWatER) (2021a) Hubbard brook experimental forest: chemistry of streamwater—monthly fluxes, watershed 6, 1963 - present ver 17. Environ Data Initiat. https://doi.org/10.6073/pasta/3f608226a1ed499e8fa3cd188e70757c

  • HBWE Record (HBWatER) (2021b) Hubbard brook experimental forest: chemistry of precipitation—monthly fluxes, watershed 6, 1964 - present ver 11. Environ Data Initiat. https://doi.org/10.6073/pasta/39887003e9c00b21953f9f5f03b558e7

  • Hobbie JE, Carpenter SR, Grimm NB, Grosz JR, Seastedt TR (2003) The US long term ecological research program. Bioscience 53:21–32

    Article  Google Scholar 

  • Kemp MJ, Dodds WK (2001) Spatial and temporal patterns of nitrogen concentrations in pristine and agriculturally-influenced prairie streams. Biogeochemistry 53:125–141

    Article  Google Scholar 

  • Kendall MG (1948) Rank correlation methods.

  • Kwon T, Shibata H, Kepfer-Rojas S, Schmidt IK, Larsen KS, Beier C, Berg B, Verheyen K, Lamarque JF, Hagedorn F, Eisenhauer N, Djukic I, Network TC (2021) Effects of climate and atmospheric nitrogen deposition on early to mid-term stage litter decomposition across biomes. Front Forests Global Chang 4:678480

    Article  Google Scholar 

  • Kuemmerlen M, Stoll S, Sundermann A, Haase P (2015) Predicting stream macroinvertebrate distributions in the LTER-site Rhine-Main-Observatory: long-term monitoring data meets high-resolution, catchment-based SDMs. Ecol Ind. https://doi.org/10.1016/j.ecolind.2015.08.008

    Article  Google Scholar 

  • Laudon H, Taberman I, Ågren A, Futter M, Ottosson-Löfvenius M, Bishop K (2013) The Krycklan Catchment Study—a flagship infrastructure for hydrology, biogeochemistry, and climate research in the boreal landscape. Water Resour Res. https://doi.org/10.1002/wrcr.20520

    Article  Google Scholar 

  • LeBauer D, Treseder K (2008) Nitrogen limitation of net primary productivity. Ecology 89:371–379

    Article  Google Scholar 

  • Leitner S, Dirnböck T, Kobler J, Zechmeister-Boltenstern S (2020) Legacy effects of drought on nitrate leaching in a temperate mixed forest on karst. J Environ Manag 262:110338

    Article  Google Scholar 

  • Lajtha K (2020) Nutrient retention and loss during ecosystem succession: revisiting a classic model. Ecology 101:e02896

    Article  Google Scholar 

  • Lajtha K, Jones J (2018) Forest harvest legacies control dissolved organic carbon export in small watersheds, western Oregon. Biogeochemistry 140:299–315

    Article  Google Scholar 

  • Li Y, Schichtel BA, Walker JT, Schwede DB, Chen X, Lehmann CM, Puchalski MA, Gay DA, Collett JL (2016) Increasing importance of deposition of reduced nitrogen in the United States. Proc Natl Acad Sci 113:5874–5879

    Article  Google Scholar 

  • Lloret J, Valiela I (2016) Unprecedented decrease in deposition of nitrogen oxides over North America: the relative effects of emission controls and prevailing air-mass trajectories. Biogeochemistry 129:165–180. https://doi.org/10.1007/s10533-016-0225-5

    Article  Google Scholar 

  • Loecke TD, Burgin AJ, Riveros-Iregui DA, Ward AS, Thomas SA, Davis CA, Clair MAS (2017) Weather whiplash in agricultural regions drives deterioration of water quality. Biogeochemistry 133:7–15

    Article  Google Scholar 

  • Lovett GM, Goodale CL (2011) A new conceptual model of nitrogen saturation based on experimental nitrogen addition to an oak forest. Ecosystems 14:615–631

    Article  Google Scholar 

  • Lovett GM, Burns DA, Driscoll CT, Jenkins JC, Mitchell MJ, Rustad L, Shanley JB, Likens GE, Haeuber R (2007) Who needs environmental monitoring? Front Ecol Environ 5:253–260

    Article  Google Scholar 

  • MacDonald JA, Dise NB, Matzner E, Armbruster M, Gundersen P, Forsius M (2002) Nitrogen input together with ecosystem nitrogen enrichment predict nitrate leaching from European forests. Glob Chang Biol 8:1028–1033

    Article  Google Scholar 

  • Mann HB (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  • McDowell WH, Leon MC, Shattuck MD, Potter JD, Heartsill‐Scalley T, González G, Shanley JB, Wymore AS (2021) Luquillo experimental forest: catchment science in the montane tropics. Hydrol Process 35.

  • Meesenburg H, Sutmöller J, Hentschel S (2010) Retrospective and prospective evaluation of water budgets at Lange Bramke, Harz Mountains, Germany: effects of plant cover and climate change. IAHS Publ 336:239–244

    Google Scholar 

  • Melecis V, Vīksne J, Spriņfe G, Briede A (2005) Long-term ecological research in Latvia. Acta Zool Lituanica 15:141–144

    Article  Google Scholar 

  • Mirtl M, Borer ET, Djukic I, Forsius M, Haubold H, Hugo W, Jourdan J, Lindenmayer D, McDowell WH, Muraoka H, Orenstein DE, Pauw JC, Peterseil J, Shibata H, Wohner C, Yu X, Haase P (2018) Genesis, goals and achievements of long-term ecological research at the global scale: a critical review of ILTER and future directions. Sci Total Environ 626:1439–1462

    Article  Google Scholar 

  • Morse NB, Wollheim WM (2014) Climate variability masks the impacts of land use change on nutrient export in a suburbanizing watershed. Biogeochemistry 121:45–59

    Article  Google Scholar 

  • Muelbert JH, Nidzieko NJ, Acosta ATR, Beaulieu SE, Bernardino AF, Boikova E, Bornman TG, Cataletto B, Deneudt K, Eliason E, Kraberg A, Nakaoka M, Pugnetti A, Ragueneau O, Scharfe M, Soltwedel T, Sosik HM, Stanisci A, Stefanova K, Stéphan P, Stier A, Wikner J, Zingone A (2019) ILTER—the international long-term ecological research network as a platform for global coastal and ocean observation. Front Mar Sci 6:527

    Article  Google Scholar 

  • Mulholland PJ, Hall RO, Sobota DJ, Dodds WK, Findlay SEG, Grimm NB, Hamilton SK, McDowell WH, Obrien JM, Tank JL, Ashkenas LR, Cooper LW, Dahm CN, Gregory SV, Johnson SL, Meyer JL, Peterson BJ, Poole GC, Valett HM, Webster JR, Arango CP, Beaulieu JJ, Bernot MJ, Burgin AJ, Crenshaw CL, Helton AM, Johnson LT, Niederlehner BR, Potter JD, Sheibley RW, Thomas SM (2009) Nitrate removal in stream ecosystems measured by N-15 addition experiments: denitrification. Limnol Oceanogr 54:666–680

    Article  Google Scholar 

  • National Acid Rain Database (NARD) National Institute for Environmental Studies, Japan. http://db.cger.nies.go.jp/dataset/acidrain/ja/01/

  • Niedrist GH, Psenner R, Sommaruga R (2018) Climate warming increases vertical and seasonal water temperature differences, and inter-annual variability in a mountain lake. Clim Chang 151:473–490

    Article  Google Scholar 

  • Nishina K, Watanabe M, Koshikawa MK, Takamatsu T, Morino Y, Nagashima T, Soma K, Hayashi S (2017) Varying sensitivity of mountainous streamwater base-flow NO3-concentrations to N deposition in the northern suburbs of Tokyo. Sci Rep 7:1–9

    Article  Google Scholar 

  • Ohte N, Sebestyen SD, Shanley JB, Doctor DH, Kendall C, Wankel SD, Boyer EW (2004) Tracing sources of nitrate in snowmelt runoff using a high-resolution isotopic technique. Geophys Res Lett 31:L21506

    Article  Google Scholar 

  • Pardo LH, Fenn ME, Goodale CL, Geiser LH, Driscoll CT, Allen EB, Baron JS, Bobbink R, Bowman WD, Clark CM, Emmett B, Gilliam FS, Greaver TL, Hall SJ, Lilleskov EA, Liu L, Lynch JA, Nadelhoffer KJ, Perakis SS, Robin-Abbott MJ, Stoddard JL, Weathers KC, Dennis RL (2011) Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecol Appl 21:3049–3082

    Article  Google Scholar 

  • Park JH, Duan L, Kim B, Mitchell MJ, Shibata H (2010) Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia. Environ Int 36:212–225

    Article  Google Scholar 

  • Peterson BJ, Wolheim WM, Mulholland PJ, Webster JR, Meyer JL, Tank JL, Marti E, Bowden WB, Valett HM, Hershey AE, McDowell WH, Doods WK, Hamilton SK, Gregory S, Morrall DD (2001) Control of nitrogen export from watersheds by headwater streams. Science 292:86–90

    Article  Google Scholar 

  • Pilotto F, Kühn I, Adrian R et al (2020) Meta-analysis of multidecadal biodiversity trends in Europe. Nat Commun 11:3486

    Article  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

  • Rogora M (2007) Synchronous trends in N-NO3 export from N-saturated river catchments in relation to climate. Biogeochemistry 86:251–268

    Article  Google Scholar 

  • Schleppi P, Curtaz F, Krause K (2017a) Nitrate leaching from a sub-alpine coniferous forest subjected to experimentally increased N deposition for 20 years, and effects of tree girdling and felling. Biogeochem 134:319–335

    Article  Google Scholar 

  • Schleppi P, Curtaz F, Krause K (2017b) Nitrate leaching from a sub-alpine coniferous forest subjected to experimentally increased N deposition for 20 years, and effects of tree girdling and felling. Biogeochemistry 134:319–335. https://doi.org/10.1007/s10533-017-0364-3

    Article  Google Scholar 

  • Schleppi P, Körner C, Klein T (2019) Increased nitrogen availability in the soil under mature Picea abies trees exposed to elevated CO2 concentrations. Front Glob Chang 2:59

    Article  Google Scholar 

  • Schmitz A, Sanders T, Bolte A, Bussotti F, Dirnböck T, Johnson J, Peñuelas J, Pollastrini M, Prescher A, Sardans J, Verstraeten A, de Vries W (2019) Responses of forest ecosystems in Europe to decreasing nitrogen deposition. Environ Pollut 244:980–994

    Article  Google Scholar 

  • Schumann S, Schmalz B, Meesenburg H, Schröder U (2010) Status and perspectives of hydrology in small basins. IHP/HWRP-Berichte 10, Koblenz, 69 pp. https://deims.org/f73a0f95-8fb0-4755-92fc-f4b0207f5fe4

  • Shibata H, Kuraji K, Toda H, Sasa K (2001) Regional comparison of nitrogen export to Japanese forest streams. Sci World J 1(Suppl 2):572–580

    Article  Google Scholar 

  • Shibata H, Branquinho C, McDowell WH, Mitchell MJ, Monteith DT, Tang J, Arvola L, Cruz C, Cusack DF, Halada L, Kopáček J, Máguas C, Sajidu S, Schubert H, Tokuchi N, Záhora J (2015) Consequence of altered nitrogen cycles in the coupled human and ecological system under changing climate: the need for long-term and site-based research. Ambio 44:178–193

    Article  Google Scholar 

  • Sugimoto R, Tsuboi T (2017) Seasonal and annual fluxes of atmospheric nitrogen deposition and riverine nitrogen export in two adjacent contrasting rivers in central Japan facing the Sea of Japan. J Hydrol 11:117–125

    Google Scholar 

  • Takahashi M, Feng Z, Mikhailova TA, Kalugina OV, Shergina OV, Afanasieva LV, Heng RKJ, Majid NMA, Sase H (2020) Air pollution monitoring and tree and forest decline in East Asia: a review. Sci Total Environ 742:140288

    Article  Google Scholar 

  • Templer PH, Pinder RW, Goodale CL (2012) Effects of nitrogen deposition on greenhouse-gas fluxes for forests and grasslands of North America. Front Ecol Environ 10:547–553

    Article  Google Scholar 

  • Templer PH, Harrison JL, Pilotto F, Flores-Díaz A, Haase P, McDowell WH, Sharif R, Shibata H, Blankman D, Avila A, Baatar U, Bogena HR, Bourgeois I, Campbell J, Dirnböck T, Dodds WK, Hauken M, Kokorite I, Lajtha K, Lai I, Laudon H, Lin TC, Lins S, Meesenburg H, Pinho P, Robison A, Rogora M, Scheler B, Schleppi P, Sommaruga R, Staszewski T, Taka M (2022) International long-term ecological research network (ILTER) atmospheric deposition and stream nitrogen synthesis ver 1. Environ Data Initiat. https://doi.org/10.6073/pasta/a815f37b4aaa7cf56337e6451a2e2444(Accessed2022-02-14)

  • Terauda E, Nikodemus O (2007) Sulphate and nitrate in precipitation and soil water in pine forests in Latvia. Water Air Soil Pollut Focus 7:77–84

    Article  Google Scholar 

  • Theobald MR, Vivanco MG, Aas W, Andersson C, Ciarelli G, Couvidat F, Cuvelier K, Manders A, Mircea M, Pay MT, Tsyro S, Adani M, Bergström R, Bessagnet B, Briganti G, Cappelletti A, D’Isidoro M, Fagerli H, Mar K, Otero N, Raffort V, Roustan Y, Schaap M, Wind P, Colette A (2019) An evaluation of European nitrogen and sulfur wet deposition and their trends estimated by six chemistry transport models for the period 1990–2010. Atmos Chem Phys 19:379–405

    Article  Google Scholar 

  • Thomas RQ, Canham CD, Weathers KC, Goodale CL (2010) Increased tree carbon storage in response to nitrogen deposition in the US. Nat Geosci 3:13–17

    Article  Google Scholar 

  • Turner BL, Brenes-Arguedes T, Condit R (2018) Pervasive phosphorus limitation of tree species but not communities in tropical forests. Nature 555:367–370

    Article  Google Scholar 

  • Vanderbilt KL, Lajtha K, Swanson F (2003) Biogeochemistry of unpolluted forested watersheds in the Oregon Cascades: temporal patterns of precipitation and stream nitrogen fluxes. Biogeochemistry 62:87–117

    Article  Google Scholar 

  • Venerables WN, Ripley BD (2002) Modern applied statistics with S. Springer, New York

    Book  Google Scholar 

  • Viechtbauer W (2010) Conducting meta-analyses in R with the metafor package. J Stat Softw 36:1–48

    Article  Google Scholar 

  • Viechtbauer W, Cheung MWL (2010) Outlier and influence diagnostics for meta-analysis. Res Synth Methods 1:112–125

    Article  Google Scholar 

  • Vuorenmaa J, Augustaitis A, Beudert B, Clarke N, de Wit HA, Dirnböck T, Frey J, Forsius M, Indriksone I, Kleemola S, Kobler J, Krám P, Lindroos A, Lundin L, Ruoho-Airola T, Ukonmaanaho L, Váňa M (2017) Long-term sulphate and inorganic nitrogen mass balance budgets in European ICP Integrated Monitoring catchments (1990–2012). Ecol Ind 76:15–29

    Article  Google Scholar 

  • Vuorenmaa J, Augustaitis A, Beudert B, Bochenek W, Clarke N, de Wit HA, Dirnböck T, Frey J, Hakola H, Kleemola S, Kobler J, Kram P, Lindroos A, Lundin L, Lofgren S, Marchetto A, Pecka T, Schulte-Bisping H, Skotak K, Srybny A, Szpikowski J, Ukonmaanaho L, Vana M, Akerblom S, Forsius M (2018) Long-term changes (1990–2015) in the atmospheric deposition and runoff water chemistry of sulphate, inorganic nitrogen and acidity for forested catchments in Europe in relation to changes in emissions and hydrometeorological conditions. Sci Total Environ 625:1129–1145

    Article  Google Scholar 

  • Waldner P, Marchetto A, Thimonier A, Schmitt M, Rogora M, Granke O, Mues V, Hansen K, Pihl Karlsson G, Zlindra D, Clarke N, Verstraeten A, Lazdins A, Schimming C, Iacoban C, Lindroos A, Vanguelova E, Benham S, Meesenburg H, Nicolas M, Kowalska A, Apuhtin V, Nappa U, Lachmanova Z, Kristoefel F, Bleeker A, Ingerslev M, Vesterdal L, Molina J, Fischer U, Seidling W, Jonard M, O’Dea P, Johnson J, Fischer R, Lorenz M (2014) Detection of temporal trends in atmospheric deposition of inorganic nitrogen and sulphate to forests in Europe. Atmos Environ 95:363–374

    Article  Google Scholar 

  • Wen Z, Xu W, Li Q, Han M, Tang A, Zhang Y, Luo X, Shen J, Wang W, Li K, Pan Y, Zhang L, Li W, Collette JF Jr, Zhong B, Wang X, Goulding K, Zhang F, Liu X (2020) Changes of nitrogen deposition in China from 1980 to 2018. Environ Int 144:106022

    Article  Google Scholar 

  • Whitehead PG, Wilby RL, Battarbee RW, Kernan M, Wade AJ (2009) A review of the potential impacts of climate change on surface water quality. Hydrol Sci J 54:101–123

    Article  Google Scholar 

  • Wilkinson MD, Dumontier M, Wilkinson MD, Dumontier M, Jan Aalbersberg IJ, Appleton G, Axton M, Baak A, Blomberg N, Boiten J, da Silva B, Santos L, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M, Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa J, AC ’t Hoen P, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ, Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R, Sansone S, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M, van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K, Zhao J, Mons B (2016) The FAIR guiding principles for scientific data management and stewardship. Sci Data 3:160018

    Article  Google Scholar 

  • Wohner C, Ohnemus T, Zacharias S, Mollenhauer H, Ellis EC, Klug H, Shibata H, Mirtl M (2021) Assessing the biogeographical and socio-ecological representativeness of the ILTER site network. Ecol Ind 127:107785

    Article  Google Scholar 

  • Wurtsbaugh WA, Paerl HW, Dodds WK (2019) Nutrients, eutrophication and harmful algal blooms along the freshwater to marine continuum. Wires Water 6:e1373

    Article  Google Scholar 

  • Yu G, Chen Z, Piao S, Peng C, Ciais P, Wang Q, Li X, Zhu X (2014) High carbon dioxide uptake by subtropical forest ecosystems in the East Asian monsoon region. Proc Natl Acad Sci USA 111:4910–4915

    Article  Google Scholar 

  • Yu G, Jia Y, He N, Zhu J, Chen Z, Wang Q, Piao S, Liu X, He H, Guo X, Wen Z, Li P, Ding G, Goulding K (2019) Stabilization of atmospheric nitrogen deposition in China over the past decade. Nat Geosci 12.

  • Zhao W, Zhao Y, Ma M, Chang M, Duan L (2021) Long-term variability in base cation, sulfur and nitrogen deposition and critical load exceedance of terrestrial ecosystems in China. Environ Pollut 289:117974

    Article  Google Scholar 

Download references

Acknowledgements

We thank the organizers and funders of the ILTER Nitrogen Initiative Training Course and Workshop in Hokkaido, Japan in June 2016, which brought together many of the participants in this project. Templer was supported by a US National Science Foundation LTER grant NSF DEB 1637685. McDowell was supported by US National Science Foundation LTER grant NSF DEB 1831592. We are grateful to the EU Horizon 2020 funded eLTER PLUS project (Grand Agreement No. 871128) for financial support to Haase and Dirnböck. Dirnböck was also funded by the LTER-CWN project (FFG project number 858024). This study was partly supported by the Research Initiative Grants of the ILTER, Grants-in-Aid for Scientific Research (17H03833), and Research Institute for Humanity and Nature (RIHN; a constituent member of NIHU) Project No. 14200156. Sharif was supported by NRT-INFEWS: UMD Global STEWARDS (STEM Training at the Nexus of Energy, WAter Reuse and FooD Systems) that was awarded to the University of Maryland School of Public Health by the National Science Foundation National Research Traineeship Program, Grant number 1828910. The monitoring of the Svartberget site in Sweden was funded by the SITES program from the Swedish Research Council. The monitoring of the Volbu Nyhaga site in Norway was part of JOVA—The Norwegian Agricultural Environmental Monitoring Programme, financed by the Ministry of Agriculture and Food. Lajtha was supported by NSF grants DEB-1257032 and DEB-1440409 to the H. J. Andrews Long Term Ecological Research program. The data collection in the Wüstebach catchment was supported by TERENO (Terrestrial Environmental Observatories) funded by the Helmholtz-Gemeinschaft. We thank the “Hessisches Landesamt für Naturschutz, Umwelt und Geologie” for providing data from the Rhine-Main-Observatory. I.Kokorīte was supported by the University of Latvia grant No. AAp2016/B041//Zd2016/AZ03. We thank the Latvian Environment, Geology and Meteorology Center for providing the monitoring data for Latvian site. Anna Avila was supported by Spanish Ministry of Science projects CGL2017-84687-C2-2-R and CGL2009-13188-C03-01. We thank the Tyrolean Alps Long-Term Sociological Ecological and Research (LTSER, Austria) and R. Psenner and S. Morales for helping with data for Piburger See. Data from Hubbard Brook were supported by the National Science Foundation (DEB-1907683) and US Forest Service, Northern Research Station. A. Robison was supported by US National Science Foundation LTER grant NSF OCE 1637630. W. Dodds was supported by NSF DEB 2025849. Observations at Lange Bramke site were funded by the Ministry of Nutrition, Agriculture and Consumer Protection of Lower Saxony under the Permanent Soil Monitoring Programme. The Krofdorf site was funded by the Hessian Ministry of Environment, Climate Protection, Agriculture and Consumer Protection under the “Waldökosystemstudie Hessen”. SRM Lins was supported by the São Paulo Research Foundation—FAPESP, grant number 2012/20377-9. Long-term monitoring at Lake Maggiore (LTER site EU-IT08-001-A) was funded by the International Commission for the Protection of Swiss-Italian waters (CIPAIS). We thank Emma Conrad-Rooney for help with Fig. 1.

Funding

Please see complete details of funding support in Acknowledgements section above.

Author information

Authors and Affiliations

Authors

Contributions

Templer led the data analysis and writing of the manuscript. Harrison and Pilotto analyzed the data. All authors contributed to the writing and editing of the manuscript.

Corresponding author

Correspondence to P. H. Templer.

Ethics declarations

Conflict of interest

The authors confirm they do not have any conflict of interest.

Additional information

Responsible Editor: R. Kelman Wieder.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Authors listed in alphabetical order after first nine authors.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 347 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Templer, P.H., Harrison, J.L., Pilotto, F. et al. Atmospheric deposition and precipitation are important predictors of inorganic nitrogen export to streams from forest and grassland watersheds: a large-scale data synthesis. Biogeochemistry 160, 219–241 (2022). https://doi.org/10.1007/s10533-022-00951-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-022-00951-7

Keywords

Navigation