Skip to main content
Log in

Transport, anoxia and end-product accumulation control carbon dioxide and methane production and release in peat soils

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Anaerobic respiration and methanogenesis have been found to slow-down in water saturated peat soils with accumulation of metabolic end-products, i.e. dissolved inorganic carbon (DIC) and methane (CH4), due to a lack of solute and gas transport. So far it is not well understood how solute and gas transport may control this effect. We conducted a column experiment with homogenized ombrotrophic peat over a period of 300 days at 20 °C. We specifically evaluated the effects of diffusive flux as control, downward advective water flux, intensified ebullition by conduit gas transport and diffusive oxygen supply on controlling anaerobic decomposition rates and carbon (C) turnover. To simulate advective flux, water and solutes were recirculated downward through the column after stripping of dissolved gases. We analyzed DIC and CH4 concentrations, production rates and fluxes, gas filled porosity, oxygen profiles (O2) and microbial C biomass over time. DIC residence time thereby served as proxy to characterize transport. A slowdown of anaerobic respiration and methanogenesis evolved with the accumulation of the end-products DIC and CH4 and set in after 150 days. This slow-down was accompanied by a decrease in the distribution of microbial biomass C with depths. Anaerobic DIC and CH4 production rates were fastest close to the water table and sharply slowed with depth. Accumulation of DIC and CH4 in the homogeneous peat material throughout the column decreased decomposition constants from about 10−5 near the surface to 10−9 year−1 deeper in the profile. Advective water transport extended the zone of active methanogenesis compared to a diffusive system; experimental enhancement of ebullition had little or no effect as well as strictly anoxic conditions. DIC residence time was negatively correlated to anaerobic respiration suggesting this parameter to be a predictor of anaerobic peat decomposition in peatlands. Overall, this study suggests that burial of peat and accumulation of metabolic end-products effectively slows decomposition and that this effect needs to be considered to explain peat accumulation and the response of peat mineralization rates to changes in environmental conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Baird AJ, Beckwith CW, Waldron S, Waddington JM (2004) Ebullition of methane-containing gas bubbles from near-surface Sphagnum peat. Geophys Res Lett. doi:10.1029/2004GL021157

    Google Scholar 

  • Basiliko N, Moore TR, Lafleur PM, Roulet NT (2005) Seasonal and inter-annual decomposition, microbial biomass, and nitrogen dynamics in a canadian bog. Soil Sci. doi:10.1097/01.ss.0000196765.59412.14

    Google Scholar 

  • Basiliko N, Moore T, Jeannotte R, Bubier J (2006) Nutrient input and carbon and microbial dynamics in an ombrotrophic bog. Geomicrobiol J 23:531–543. doi:10.1080/01490450600897278

    Article  Google Scholar 

  • Beckwith CW, Baird AJ, Heathwaite AL (2003) Anisotropy and depth-related heterogeneity of hydraulic conductivity in a bog peat. II: modelling the effects on groundwater flow. Hydrol Process 17:103–113. doi:10.1002/hyp.1117

    Article  Google Scholar 

  • Beer J, Blodau C (2007) Transport and thermodynamics constrain belowground carbon turnover in a northern peatland. Geochim Cosmochim Acta 71:2989–3002. doi:10.1016/j.gca.2007.03.010

    Article  Google Scholar 

  • Beer J, Lee K, Whiticar M, Blodau C (2008) Geochemical controls on anaerobic organic matter decomposition in a northern peatland. Limnol Oceanogr 53:1393–1407. doi:10.4319/lo.2008.53.4.1393

    Article  Google Scholar 

  • Belyea LR (1996) Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland. Oikos 77:529–539. doi:10.2307/3545942

    Article  Google Scholar 

  • Belyea LR, Baird AJ (2006) Beyond “the limits to peat bog growth”: cross-scale feedback in peatland development. Ecol Monogr 76:299–322

    Article  Google Scholar 

  • Berg P, Risgaard-Petersen N, Rysgaard S (1998) Interpretation of measured concentration profiles in sediment pore water. Limnol Oceanogr 43:1500–1510. doi:10.4319/lo.1998.43.7.1500

    Article  Google Scholar 

  • Bergman I, Lundberg P, Nilsson M (1999) Microbial carbon mineralisation in an acid surface peat: effects of environmental factors in laboratory incubations. Soil Biol Biochem 31:1867–1877. doi:10.1016/S0038-0717(99)00117-0

    Article  Google Scholar 

  • Blodau C, Moore TR (2002) Macroporosity affects water movement and pore water sampling in peat soils. Soil Sci 167:98–109. doi:10.1097/00010694-200202000-00002

    Article  Google Scholar 

  • Blodau C, Moore TR (2003) Micro-scale CO2 and CH4 dynamics in a peat soil during a water fluctuation and sulfate pulse. Soil Biol Biochem 35:535–547. doi:10.1016/S0038-0717(03)00008-7

    Article  Google Scholar 

  • Blodau C, Siems M (2010) Drainage-induced forest growth alters belowground carbon biogeochemistry in the Mer Bleue bog, Canada. Biogeochemistry 107:107–123. doi:10.1007/s10533-010-9535-1

    Article  Google Scholar 

  • Blodau C, Basiliko N, Moore TR (2004) Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry 67:331–351. doi:10.1023/B:BIOG.0000015788.30164.e2

    Article  Google Scholar 

  • Blodau C, Siems M, Beer J (2011) Experimental burial inhibits methanogenesis and anaerobic decomposition in water-saturated peats. Environ Sci Technol 45:9984–9989. doi:10.1021/es201777u

    Article  Google Scholar 

  • Broder T, Blodau C, Biester H, Knorr KH (2012) Peat decomposition records in three pristine ombrotrophic bogs in southern Patagonia. Biogeosciences 9:1479–1491. doi:10.5194/bg-9-1479-2012

    Article  Google Scholar 

  • Clymo RS (1984) The limits to peat bog growth. Philos Trans R Soc London Ser B 303:605–654. doi:10.1098/rstb.1984.0002

    Article  Google Scholar 

  • Clymo RS, Turunen J, Tolonen K (1998) Carbon accumulation in peatland. Oikos 81:368–388. doi:10.2307/3547057

    Article  Google Scholar 

  • Coulthard TJ, Baird AJ, Ramirez J, Waddington JM (2009) Methane dynamics in peat: Importance of shallow peats and a novel reduced-complexity approach for modeling ebullition. In: Carbon Cycling in Northern Peatlands. pp 173–185

  • Deppe M, Knorr K, McKnight D, Blodau C (2010) Effects of short-term drying and irrigation on CO2 and CH4 production and emission from mesocosms of a northern bog and an alpine fen. Biogeochemistry 100:89–103. doi:10.1007/s10533-010-9406-9

    Article  Google Scholar 

  • Estop-Aragonés C, Knorr K-H, Blodau C (2013) Belowground in situ redox dynamics and methanogenesis recovery in a degraded fen during dry-wet cycles and flooding. Biogeosciences 10:421–436. doi:10.5194/bg-10-421-2013

    Article  Google Scholar 

  • Fan Z, Neff JC, Waldrop MP et al (2014) Transport of oxygen in soil pore-water systems: implications for modeling emissions of carbon dioxide and methane from peatlands. Biogeochemistry 121:455–470. doi:10.1007/s10533-014-0012-0

    Article  Google Scholar 

  • Fechner-Levy E, Hemond H (1996) Trapped methane volume and potential effects on methane ebullition in a northern peatland. Oceanography 41(7):1375–1383

    Google Scholar 

  • Fraser C, Roulet N, Lafleur M (2001) Groundwater flow patterns in a large peatland. J Hydrol 246:142–154

    Article  Google Scholar 

  • Freeman C, Ostle N, Kang H (2001) An enzymic’latch’on a global carbon store. Nature 409:149–150

    Article  Google Scholar 

  • Freeman C, Ostle NJ, Fenner N, Kang H (2004) A regulatory role for phenol oxidase during decomposition in peatlands. Soil Biol Biochem 36:1663–1667. doi:10.1016/j.soilbio.2004.07.012

    Article  Google Scholar 

  • Frolking S, Roulet NT, Moore TR et al (2001) Modeling northern peatland decomposition and peat accumulation. Ecosystems 4:479–498

    Article  Google Scholar 

  • Glatzel S, Basiliko N, Moore T (2004) Carbon dioxide and methane production potentials of peats from natural, harvested and restored sites, eastern Québec, Canada. Wetlands 24:261–267

    Article  Google Scholar 

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: an assessment of the intergovernmental panel on climate change. IPCC, Geneva, pp 12–17

    Google Scholar 

  • Kammann C, Grünhage L, Jäger HJ (2001) A new sampling technique to monitor concentrations of CH4, N2O and CO2 in air at well-defined depths in soils with varied water potential. Eur J Soil Sci 52:297–303. doi:10.1046/j.1365-2389.2001.00380.x

    Article  Google Scholar 

  • Knorr K, Oosterwoud M, Blodau C (2008) Experimental drought alters rates of soil respiration and methanogenesis but not carbon exchange in soil of a temperate fen. Soil Biol Biochem 40:1781–1791. doi:10.1016/j.soilbio.2008.03.019

    Article  Google Scholar 

  • Lerman A (1988) Geochemical processes—water and sediment environments. Krieger Oublishing Company, Malabar

    Google Scholar 

  • Limpens J, Berendse F, Blodau C, et al (2008) Peatlands and the carbon cycle: from local processes to global implications a synthesis (vol 5, pg 1475, 2008). Biogeosciences 5:1739

  • Mellegård H, Stalheim T, Hormazabal V et al (2009) Antibacterial activity of sphagnum acid and other phenolic compounds found in Sphagnum papillosum against food-borne bacteria. Lett Appl Microbiol 49:85–90. doi:10.1111/j.1472-765X.2009.02622.x

    Article  Google Scholar 

  • Moore T, Dalva M (1993) The influence of temperature and water table position on carbon dioxide and methane emissions from laboratory columns of peatland soils. Eur J Soil Sci 44:651–664. doi:10.1111/j.1365-2389.1993.tb02330.x

    Article  Google Scholar 

  • Moore TR, Dalva M (1997) Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biol Biochem 29:1157–1164. doi:10.1016/S0038-0717(97)00037-0

    Article  Google Scholar 

  • Morris PJ, Waddington JM (2011) Groundwater residence time distributions in peatlands: implications for peat decomposition and accumulation. Water Resour Res. doi:10.1029/2010WR009492

    Google Scholar 

  • Niemeyer J, Chen Y, Bollag J-M (1992) Characterization of humic acids, composts, and peat by diffuse reflectance fourier-transform infrared spectroscopy. Soil Sci Soc Am J 56:135. doi:10.2136/sssaj1992.03615995005600010021x

    Article  Google Scholar 

  • Oldham CE, Farrow DE, Peiffer S (2013) A generalized Damköhler number for classifying material processing in hydrological systems. Hydrol Earth Syst Sci 17:1133–1148. doi:10.5194/hess-17-1133-2013

    Article  Google Scholar 

  • Ramirez JA, Baird AJ, Coulthard TJ, Waddington JM (2015) Ebullition of methane from peatlands: does peat act as a signal shredder? Geophys Res Lett. doi:10.1002/2015GL063469

    Google Scholar 

  • Scanlon S, Moore T (2000) Carbon dioxide production from peatland soil profiles: the influence of temperature, oxic/anoxic conditions and substrate. Soil Sci 165:153–160. doi:10.1097/00010694-200002000-00006

    Article  Google Scholar 

  • Shannon RD, White JR (1994) A three-year study of controls on methane emissions from two michigan peatlands a three-year study of controls on methane emissions from two michigan peatlands introduction estimates of methane emissions from northern. Biogeochemistry 27:35–60

    Article  Google Scholar 

  • Sparling GP, Feltham CW, Reynolds J et al (1990) Estimation of soil microbial C by a fumigation extraction method—use on soils of high organic-matter content, and a reassessment of the kec-factor. Soil Biol Biochem 22:301–307. doi:10.1016/0038-0717(90)90104-8

    Article  Google Scholar 

  • Vance ED, Brookes PC, Jenkinson DS (1987) An extraction method for measuring soil microbial biomass C. Soil Biol Biochem 19:703–707. doi:10.1016/0038-0717(87)90052-6

    Article  Google Scholar 

  • Whiting GJ, Chanton JP (1992) Plant dependent CH4 emission in a subarctic Canadian fen. Global Biogeochem Cycles 6:225. doi:10.1029/92GB00710

    Article  Google Scholar 

  • Wieder RK (2001) Past, present, and future peatland carbon balance: an empirical model based on 210 Pb-dated cores. Ecol Appl 11:327–342. doi:10.2307/3060892

    Google Scholar 

  • Yavitt JB, Williams CJ, Wieder RK (1997) Production of methane and carbon dioxide in peatland ecosystems across North America: effects of temperature, aeration, and organic chemistry of peat. Geomicrobiol J 14:299–316

    Article  Google Scholar 

Download references

Acknowledgements

The study was funded by the German Research Foundation (DFG) Grant BL563/20-1 to C. Blodau. All analyses of this study were carried out in the laboratory of the Institute of Landscape Ecology. The help of the laboratory staff during analyses is greatly acknowledged We are thankful to Sina Berger and Wiebke Münchberger for assistance in using the portable gas analyzer. We also thank student assistants Ronya Wallis, Leonie Fröhlich and Frederik Bock for lab and field-work support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus-Holger Knorr.

Additional information

Responsible Editor: Karsten Kalbitz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1326 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonaiuti, S., Blodau, C. & Knorr, KH. Transport, anoxia and end-product accumulation control carbon dioxide and methane production and release in peat soils. Biogeochemistry 133, 219–239 (2017). https://doi.org/10.1007/s10533-017-0328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-017-0328-7

Keywords

Navigation