Skip to main content

Advertisement

Log in

The energetic and chemical signatures of persistent soil organic matter

  • Biogeochemistry Letters
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

A large fraction of soil organic matter (OM) resists decomposition over decades to centuries as indicated by long radiocarbon residence times, but the mechanisms responsible for the long-term (multi-decadal) persistence are debated. The current lack of mechanistic understanding limits our ability to accurately predict soil OM stock evolution under climate and land-use changes. Using a unique set of historic soil samples from five long-term (27–79 years) bare fallow experiments, we demonstrate that despite wide pedo-climatic diversity, persistent OM shows specific energetic signatures, but no uniform chemical composition. From an energetic point of view, thermal analyses revealed that combustion of persistent OM occurred at higher temperature and provided less energy than combustion of more labile OM. In terms of chemical composition, persistent OM was H-depleted compared to OM present at the start of bare fallow, but spectroscopic analyses of OM functional groups did not reflect a consistent chemical composition of OM across sites, nor substantial modifications with bare fallow duration. The low energy content of persistent OM may be attributed to a combination of reduced content of energetic C–H bonds or stronger interactions between OM and the mineral matrix. Soil microorganisms thus appear to preferentially mineralize high-energy OM, leaving behind material with low energy content. This study provides the first direct link between long-term persistence of OM in soil and the energetic barriers experienced by the decomposer community.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Bahri H, Dignac MF, Rumpel C, Rasse DP, Chenu C, Mariotti A (2006) Lignin turnover kinetics in an agricultural soil is monomer specific. Soil Biol Biochem 38(7):1977–1988

    Article  Google Scholar 

  • Balabane M, Plante AF (2004) Aggregation and carbon storage in silty soil using physical fractionation techniques. Eur J Soil Sci 55(2):415–427

    Article  Google Scholar 

  • Baldock JA, Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31(7–8):697–710

    Article  Google Scholar 

  • Barré P, Eglin T, Christensen BT, Ciais P, Houot S, Kätterer T, van Oort F, Peylin P, Poulton PR, Romanenkov V, Chenu C (2010) Quantifying and isolating stable soil organic carbon using long-term bare fallow experiments. Biogeosciences 7(11):3839–3850

    Article  Google Scholar 

  • Beleites C, Sergo V (2014) hyperSpec: a package to handle hyperspectral data sets in R. R package version 0.98-20140523. In

  • Bernard S, Horsfield B, Schulz HM, Wirth R, Schreiber A, Sherwood N (2012) Geochemical evolution of organic-rich shales with increasing maturity: a STXM and TEM study of the Posidonia Shale (Lower Toarcian, northern Germany). Mar Petrol Geol 31(1):70–89

    Article  Google Scholar 

  • Bloemberg TG, Gerretzen J, Wouters HJP, Gloerich J, van Dael M, Wessels HJCT, van den Heuvel LP, Eilers PHC, Buydens LMC, Wehrens R (2010) Improved parametric time warping for proteomics. Chemometr Intell Lab Syst 104(1):65–74

    Article  Google Scholar 

  • Braun A, Huggins FE, Kelly KE, Mun BS, Ehrlich SN, Huffman GP (2006) Impact of ferrocene on the structure of diesel exhaust soot as probed with wide-angle X-ray scattering and C(1 s) NEXAFS spectroscopy. Carbon 44(14):2904–2911

    Article  Google Scholar 

  • Carravetta V, Polzonetti G, Iucci G, Russo MV, Paolucci G, Barnaba M (1998) High resolution NEXAFS spectroscopy study of gas-phase phenylacetylene: experiment and theory. Chem Phys Lett 288(1):37–46

    Article  Google Scholar 

  • Carrie J, Sanei H, Stern G (2012) Standardisation of Rock-Eval pyrolysis for the analysis of recent sediments and soils. Org Geochem 46:38–53

    Article  Google Scholar 

  • Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package - I: One-table methods. In: R News. vol 1. p 5–10

  • Conant RT, Drijber RA, Haddix ML, Parton WJ, Paul EA, Plante AF, Six J, Steinweg JM (2008) Sensitivity of organic matter decomposition to warming varies with its quality. Glob Change Biol 14:868–877

    Article  Google Scholar 

  • Craine JM, Fierer N, McLauchlan KK (2010) Widespread coupling between the rate and temperature sensitivity of organic matter decay. Nat Geosci 3(12):854–857

    Article  Google Scholar 

  • Currie WS (2003) Relationships between carbon turnover and bioavailable energy fluxes in two temperate forest soils. Glob Change Biol 9(6):919–929

    Article  Google Scholar 

  • De la Rosa JM, González-Pérez JA, González-Vázquez R, Knicker H, López-Capel E, Manning DAC, González-Vila FJ (2008) Use of pyrolysis/GC-MS combined with thermal analysis to monitor C and N changes in soil organic matter from a mediterranean fire affected forest. Catena 74(3):296–303

    Article  Google Scholar 

  • Disnar JR, Guillet B, Keravis D, Di-Giovanni C, Sebag D (2003) Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Org Geochem 34(3):327–343

    Article  Google Scholar 

  • Doetterl S, Stevens A, Six J, Merckx R, Van Oost K, Pinto MC, Casanova-Katny A, Munoz C, Boudin M, Venegas EZ, Boeckx P (2015) Soil carbon storage controlled by interactions between geochemistry and climate. Nat Geosci 8(10):780–783

    Article  Google Scholar 

  • Dungait JAJ, Hopkins DW, Gregory AS, Whitmore AP (2012) Soil organic matter turnover is governed by accessibility not recalcitrance. Glob Change Biol 18(6):1781–1796

    Article  Google Scholar 

  • Espitalié J, Deroo G, Marquis F (1985) Rock-Eval pyrolysis and its application 2. Rev De L Inst Fr Du Pet 40(6):755–784

    Article  Google Scholar 

  • Feng W, Plante AF, Aufdenkampe AK, Six J (2014) Soil organic matter stability in organo-mineral complexes as a function of increasing C loading. Soil Biol Biochem 69:398–405

    Article  Google Scholar 

  • Fernández JM, Plante AF, Leifeld J, Rasmussen C (2011) Methodological considerations for using thermal analysis in the characterization of soil organic matter. J Therm Anal Calorim 104(1):389–398

    Article  Google Scholar 

  • Fernández JM, Peltre C, Craine JM, Plante AF (2012) Improved characterization of soil organic matter by thermal analysis using CO2/H2O evolved gas analysis. Environ Sci Technol 46(16):8921–8927

    Article  Google Scholar 

  • Fontaine S, Barot S, Barré P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic carbon in deep soil layers controlled by fresh carbon supply. Nature 450(7167):277–280

    Article  Google Scholar 

  • Geyer KM, Kyker-Snowman E, Grandy AS, Frey SD (2016) Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127(2):173–188

    Article  Google Scholar 

  • Gleixner G, Poirier N, Bol R, Balesdent J (2002) Molecular dynamics of organic matter in a cultivated soil. Org Geochem 33(3):357–366

    Article  Google Scholar 

  • Gregorich EG, Gillespie AW, Beare MH, Curtin D, Sanei H, Yanni SF (2015) Evaluating biodegradability of soil organic matter by its thermal stability and chemical composition. Soil Biol Biochem 91:182–191

    Article  Google Scholar 

  • Guenet B, Juarez S, Bardoux G, Abbadie L, Chenu C (2012) Evidence that stable C is as vulnerable to priming effect as is more labile C in soil. Soil Biol Biochem 52:43–48

    Article  Google Scholar 

  • Herrmann AM, Bolscher T (2015) Simultaneous screening of microbial energetics and CO2 respiration in soil samples from different ecosystems. Soil Biol Biochem 83:88–92

    Article  Google Scholar 

  • Herrmann AM, Coucheney E, Nunan N (2014) Isothermal microcalorimetry provides new insight into terrestrial carbon cycling. Environ Sci Technol 48(8):4344–4352

    Article  Google Scholar 

  • Kiem R, Kögel-Knabner I (2003) Contribution of lignin and polysaccharides to the refractory carbon pool in C-depleted arable soils. Soil Biol Biochem 35:101–118

    Article  Google Scholar 

  • Kleber M (2010) What is recalcitrant soil organic matter? Environ Chem 7(4):320–332

    Article  Google Scholar 

  • LaRowe DE, Van Cappellen P (2011) Degradation of natural organic matter: a thermodynamic analysis. Geochim Cosmochim Ac 75(8):2030–2042

    Article  Google Scholar 

  • Le Guillou C, Bernard S, Brearley AJ, Remusat L (2014) Evolution of organic matter in Orgueil, Murchison and Renazzo during parent body aqueous alteration: in situ investigations. Geochim Cosmochim Ac 131:368–392

    Article  Google Scholar 

  • Lefèvre R, Barré P, Moyano FE, Christensen BT, Bardoux G, Eglin T, Girardin C, Houot S, Katterer T, van Oort F, Chenu C (2014) Higher temperature sensitivity for stable than for labile soil organic carbon—Evidence from incubations of long- term bare fallow soils. Glob Change Biol 20(2):633–640

    Article  Google Scholar 

  • Lehmann J, Kleber M (2015) The contentious nature of soil organic matter. Nature 528(7580):60–68

    Article  Google Scholar 

  • Leifeld J, von Lützow M (2014) Chemical and microbial activation energies of soil organic matter decomposition. Biol Fertil Soils 50(1):147–153

    Article  Google Scholar 

  • Lopez-Capel E, Sohi SP, Gaunt JL, Manning DAC (2005) Use of thermogravimetry-differential scanning calorimetry to characterize modelable soil organic matter fractions. Soil Sci Soc Am J 69(1):136–140

    Google Scholar 

  • Lutfalla S, Chenu C, Barre P (2014) Are chemical oxidation methods relevant to isolate a soil pool of centennial carbon? Biogeochemistry 118(1–3):135–139

    Article  Google Scholar 

  • Menichetti L, Houot S, van Oort F, Katterer T, Christensen BT, Chenu C, Barré P, Vasilyeva NA, Ekblad A (2015) Increase in soil stable carbon isotope ratio relates to loss of organic carbon: results from five long-term bare fallow experiments. Oecologia 177(3):811–821

    Article  Google Scholar 

  • Plante AF, Chenu C, Balabane M, Mariotti A, Righi D (2004) Peroxide oxidation of clay-associated organic matter in a cultivation chronosequence. Eur J Soil Sci 55(3):471–478

    Article  Google Scholar 

  • Plante AF, Conant RT, Paul EA, Paustian K, Six J (2006) Acid hydrolysis of easily dispersed and microaggregate-derived silt- and clay-sized fractions to isolate resistant soil organic matter. Eur J Soil Sci 57(4):456–467

    Article  Google Scholar 

  • Plante AF, Fernández JM, Leifeld J (2009) Application of thermal analysis techniques in soil science. Geoderma 153(1–2):1–10

    Article  Google Scholar 

  • Plante AF, Fernández JM, Haddix ML, Steinweg JM, Conant RT (2011) Biological, chemical and thermal indices of soil organic matter stability in four grassland soils. Soil Biol Biochem 43(5):1051–1058

    Article  Google Scholar 

  • Puget P, Chenu C, Balesdent J (2000) Dynamics of soil organic matter associated with particle-size fractions of water-stable aggregates. Eur J Soil Sci 51:595–605

    Article  Google Scholar 

  • Purton K, Pennock D, Leinweber P, Walley F (2015) Will changes in climate and land use affect soil organic matter composition? Evidence from an ecotonal climosequence. Geoderma 253:48–60

    Article  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. In: R foundation for statistical computing, Vienna, Austria

  • Reeves JB (2012) Mid-infrared spectral interpretation of soils: is it practical or accurate? Geoderma 189:508–513

    Article  Google Scholar 

  • Regier T, Krochak J, Sham TK, Hu YF, Thompson J, Blyth RIR (2007) Performance and capabilities of the Canadian Dragon: the SGM beamline at the Canadian Light Source. Nucl Instrum Meth A 582(1):93–95

    Article  Google Scholar 

  • Rovira P, Kurz-Besson C, Couteaux MM, Vallejo VR (2008) Changes in litter properties during decomposition: a study by differential thermogravimetry and scanning calorimetry. Soil Biol Biochem 40(1):172–185

    Article  Google Scholar 

  • Rühlmann J (1999) A new approach to estimating the pool of stable organic matter in soil using data from long-term field experiments. Plant Soil 213(1–2):149–160

    Article  Google Scholar 

  • Saenger A, Cecillon L, Sebag D, Brun JJ (2013) Soil organic carbon quantity, chemistry and thermal stability in a mountainous landscape: a Rock-Eval pyrolysis survey. Org Geochem 54:101–114

    Article  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56

    Article  Google Scholar 

  • Sebag D, Disnar JR, Guillet B, Di Giovanni C, Verrecchia EP, Durand A (2006) Monitoring organic matter dynamics in soil profiles by ‘Rock-Eval pyrolysis’: bulk characterization and quantification of degradation. Eur J Soil Sci 57(3):344–355

    Article  Google Scholar 

  • Smith JU, Smith P, Monaghan R, MacDonald J (2002) When is a measured soil organic matter fraction equivalent to a model pool? Eur J Soil Sci 53(3):405–416

    Article  Google Scholar 

  • Stöhr J (1992) NEXAFS Spectroscopy. Springer, Berlin

    Book  Google Scholar 

  • Swift MJ, Heal OW, Anderson JM (1979) Decomposition in Terrestrial Ecosystems. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Tambach TJ, Veld H, Griffioen J (2009) Influence of HCl/HF treatment on organic matter in aquifer sediments: a Rock-Eval pyrolysis study. Appl Geochem 24(11):2144–2151

    Article  Google Scholar 

  • Trumbore S (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol Appl 10(2):399–411

    Article  Google Scholar 

Download references

Acknowledgments

The INSU EC2CO program, ADEME and the ESF (MOLTER program) are acknowledged for financial support. We thank Rothamsted Research and the Lawes Agricultural Trust for access to archived samples and the BBSRC for support under the Institute National Capabilities programme grant (BBS/E/C/00005189). Related information and data can be found in the electronic Rothamsted Archive (era.rothamsted.ac.uk). The Danish contribution was financially supported by The Ministry of Food, Agriculture and Fisheries. NEXAFS data were acquired at the beamline11ID-1 at the CLS, which is supported by the NSERC, the CIHR, the NRC and the University of Saskatchewan. Special thanks go to Tom Regier for his expert support on the SGM-beamline at CLS. We also thank the reviewers for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Barré.

Additional information

Responsible Editor: Stuart Grandy.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 529 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barré, P., Plante, A.F., Cécillon, L. et al. The energetic and chemical signatures of persistent soil organic matter. Biogeochemistry 130, 1–12 (2016). https://doi.org/10.1007/s10533-016-0246-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-016-0246-0

Keywords

Navigation