Skip to main content

Advertisement

Log in

Fluvial radiocarbon and its temporal variability during contrasting hydrological conditions

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

To study the significance of land use and catchment hydrology for the age of exported carbon, we measured the radiocarbon abundances in two mountainous streams in Germany. The Hassel catchment was characterized by wider-stretched riparian areas and by a significant contribution of arable land and pasture to land use compared to the Rappbode catchment. Although soil cultivation is considered to mobilize old carbon from deep soil layers, in six out of eight situations dissolved organic carbon (DOC) was younger in Hassel stream compared to Rappbode. In contrast, we estimated annual exports of radiocarbon on the basis of yield weighed, bulked biweekly samples and found that older DOC was delivered from Hassel compared to Rappbode catchment (352 years conventional radiocarbon age as well as carbon near to modern origin, respectively). This result characterized primarily the fluxes during wet conditions, which dominated the annual exports. In a winter base flow situation, we found that old (~2550 years) snow-bound organic carbon deriving from atmospheric deposition contributed 29–43 % to stream exports. Overall, there was significant intra-annual variability of stream 14C-DOC. Within the catchments, the standard deviations of ∆14C values (47–63 ‰) were comparable to the difference of annual exports between the contrasting catchments (46 ‰). Infrequent storm flow events should be included not only in export budgets but also in studies of carbon sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aravena R, Schiff SL, Trumbore SE, Dillon PJ, Elgood R (1992) Evaluating dissolved inorganic carbon cycling in a forested lake watershed using carbon isotopes. Radiocarbon 34:636–645

    Google Scholar 

  • Berner RA (2003) The long-term carbon cycle, fossil fuels and atmospheric composition. Nature 426:323–326. doi:10.1038/nature02131

    Article  Google Scholar 

  • Bishop K, Seibert J, Köhler S, Laudon H (2004) Resolving the double paradox of rapidly mobilized old water with highly variable responses in runoff chemistry. Hydrol Process 18:185–189. doi:10.1002/hyp.5209

    Article  Google Scholar 

  • Brooks PD, McKnight DM, Bencala KE (1999) The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC-export in headwater catchments. Water Resour Res 35:1895–1902

    Article  Google Scholar 

  • Butman DE, Wilson HF, Barnes RT, Xenopoulos MA, Raymond PA (2014) Increased mobilization of aged carbon to rivers by human disturbance. Nature Geosci 8:112–116. doi:10.1038/ngeo2322

    Article  Google Scholar 

  • Büttner O, Tittel J (2013) Uncertainties in dissolved organic carbon load estimation in a small stream. J Hydrol Hydromech 61:81–83. doi:10.2478/johh-2013-0010

    Article  Google Scholar 

  • Casper M, Volkmann HN, Waldenmeyer G, Plate EJ (2003) The separation of flow pathways in a sandstone catchment of the Northern Black Forest using DOC and a nested approach. Phys Chem Earth 28:269–275. doi:10.1016/S1474-7065(03)00037-8

    Article  Google Scholar 

  • Clement JC, Robson TM, Guillemin R, Saccone P, Lochet J, Aubert S, Lavorel S (2012) The effects of snow-N deposition and snowmelt dynamics on soil-N cycling in marginal terraced grasslands in the French Alps. Biogeochemistry 108:297–315. doi:10.1007/s10533-011-9601-3

    Article  Google Scholar 

  • Cusack D, Chadwick OA, Ladefoget T, Vitousek PM (2013) Long-term effects of agriculture on soil carbon pools and carbon chemistry along a Hawaiian environmental gradient. Biogeochemistry 112:229–243. doi:10.1007/s10533-012-9718-z

    Article  Google Scholar 

  • Dalzell BJ, Filley TR, Harbor JM (2007) The role of hydrology in annual organic carbon loads and terrestrial organic matter export from a midwestern agricultural watershed. Geochim Cosmochim Acta 71:1448–1462. doi:10.1016/j.gca.2006.12.009

    Article  Google Scholar 

  • Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • DeLuca TH, Keeney DR (1994) Soluble carbon and nitrogen pools of prairie and cultivation soils: seasonal variation. Soil Sci Soc Am J 58:835–840. doi:10.2136/sssaj1994.03615995005800030029x

    Article  Google Scholar 

  • Elliot ET (1986) Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soils. Soil Sci Soc Am J 50:627–633. doi:10.2136/sssaj1986.03615995005000030017x

    Article  Google Scholar 

  • Evans CD, Freeman C, Cork LG, Thomas DN, Reynolds B, Billett MF, Garnett MH, Norris D (2007) Evidence against recent climate-induced destabilisation of soil carbon from 14C analysis of riverine dissolved organic matter. Geophys Res Lett 34:L07407. doi:10.1029/2007GL029431

    Article  Google Scholar 

  • Evans CD, Page SE, Jones T, Moore S, Gauci V, Laiho R, Hruška J, Allott TEH, Billett MF, Tipping E, Freeman C, Garnett MH (2014) Contrasting vulnerability of drained tropical and high-latitude peatlands to fluvial loss of stored carbon. Global Biogeochem Cycles 28:1215–1234. doi:10.1002/2013gb004782

    Article  Google Scholar 

  • Friese K, Schultze M, Boehrer B, Büttner O, Herzsprung P, Koschorreck M, Kuehn B, Rönicke H, Tittel J, Wendt-Potthoff K, Wollschläger U, Dietze M, Rinke K (2014) Ecological responses of two hydro-morphological similar pre-dams to contrasting land-use in the Rappbode reservoir system (Germany). Int Rev Hydrobiol 99:335–349. doi:10.1002/iroh.201301672

    Article  Google Scholar 

  • Gonfiantini R (1986) Environmental isotopes in lake studies. In: Fritz P, Fontes JC (eds) Handbook of environmental geochemistry, 2. The terrestrial environment-B. Elsevier, New York, pp 113–168

    Google Scholar 

  • Grootes PM, Nadeau MJ, Rieck A (2004) 14C-AMS at the Leibniz-Labor: radiometric dating and isotope research. Nucl Instrum Meth B 223–224:55–61. doi:10.1016/j.nimb.2004.04.015

    Article  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Global Change Biol 8:345–360. doi:10.1046/j.1354-1013.2002.00486.x

    Article  Google Scholar 

  • Hadley OL, Corrigan CE, Kirchstetter TW, Cliff SS, Ramanathan V (2010) Measured black carbon deposition on the Sierra Nevada snow pack and implication for the snow pack retreat. Atmos Chem Phys 10:7505–7513. doi:10.5194/acp-10-7505-2010

    Article  Google Scholar 

  • Hagen EM, McTammany ME, Webster JR, Benfield EF (2010) Shifts in allochthonous input and autochthonous production in streams along an agricultural land-use gradient. Hydrobiologia 655:61–77. doi:10.1007/s10750-010-0404-7

    Article  Google Scholar 

  • Herold N, Schöning I, Michalzik B, Trumbore S, Schrumpf M (2014) Controls on soil carbon storage and turnover in German landscapes. Biogeochemistry 119:435–451. doi:10.1007/s10533-014-9978-x

    Article  Google Scholar 

  • Hulatt CJ, Kaartokallio H, Oinonen M, Sonninen E, Stedmon CA, Thomas DN (2014) Radiocarbon dating of fluvial organic matter reveals land-use impacts in boreal peatlands. Environ Sci Technol 48:12543–12551. doi:10.1021/es5030004

    Article  Google Scholar 

  • Inamdar SP, Mitchell MJ (2006) Hydrologic and topographic controls on storm-event exports of dissolved organic carbon (DOC) and nitrate across catchment scales. Water Resour Res 42:W03421. doi:10.1029/2005WR004212

    Article  Google Scholar 

  • Jones JB Jr, Mulholland PJ (1998) Carbon dioxide variation in a hardwood forest stream: an integrative measure of whole catchment soil respiration. Ecosystems 1:183–196

    Article  Google Scholar 

  • Kendall KA, Shanley JB, McDonnell JJ (1999) A hydrometric and geochemical approach to test the transmissivity feedback hypothesis during snowmelt. J Hydrol 219:188–205

    Article  Google Scholar 

  • Knorr KH (2013) DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrologic flow paths—are DOC exports mediated by iron reduction/oxidation cycles? Biogeosciences 10:891–904. doi:10.5194/bg-10-891-2013

    Article  Google Scholar 

  • Lambert T, Pierson-Wickmann A-C, Gruau G, Jaffrezic A, Petitjean P, Thiebault JN, Jeanneau L (2014) DOC sources and DOC transport pathways in a small headwater catchment as revealed by carbon isotope fluctuation during storm events. Biogeosciences 11:3043–3056. doi:10.5194/bg-11-3043-2014

    Article  Google Scholar 

  • Larney FJ, Bullock MS (1994) Influence of soil wetness at time of tillage and tillage implement on soil properties affecting wind erosion. Soil Till Res 29:83–95

    Article  Google Scholar 

  • Leith FI, Garnett MH, Dinsmore KJ, Billett MF, Heal KV (2014) Source and age of dissolved and gaseous carbon in a peatland-riparian-stream continuum: a dual isotope (14C and δ13C) analysis. Biogeochemistry 119:415–433. doi:10.1007/s10533-014-9977-y

    Article  Google Scholar 

  • Levin I, Kromer B (2004) The tropospheric 14CO2 level in mid-latitudes of the northern hemisphere (1959-2003). Radiocarbon 46:1261–1272

    Google Scholar 

  • Longworth BE, Petsch ST, Raymond PA, Bauer JE (2007) Linking lithology and land use to sources of dissolved and particulate organic matter in headwaters of a temperate, passive-margin river system. Geochim Cosmochim Acta 71:4233–4250. doi:10.1016/j.gca.2007.06.056

    Article  Google Scholar 

  • Lorrain A, Savoye N, Chauvaud L, Paulet Y-M, Naulet N (2003) Decarbonation and preservation method for the analysis of organic C and N contents and stable isotope ratios of low-carbonated suspended particulate material. Anal Chim Acta 491:125–133. doi:10.1016/S0003-2670(03)00815-8

    Article  Google Scholar 

  • Lu YH, Bauer JE, Canuel EA, Chambers RM, Yamashita Y, Jaffé R, Barrett A (2014) Effects of land use on sources and ages of inorganic and organic carbon in temperate headwater streams. Biogeochemistry 119:275–292. doi:10.1007/s10533-014-9965-2

    Article  Google Scholar 

  • Marín-Spiotta E, Gruley KE, Crawford J, Atkinson EE, Miesel JR, Greene S, Cardona-Correa C, Spencer RGM (2014) Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling: transcending disciplinary and ecosystem boundaries. Biogeochemistry 117:279–297. doi:10.1007/s10533-013-9949-7

    Article  Google Scholar 

  • Moore S, Evans CD, Page SE, Garnett MH, Jones TG, Freeman C, Hooijer A, Wiltshire AJ, Limin SH, Gauci V (2013) Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493:660–664. doi:10.1038/nature11818

    Article  Google Scholar 

  • Moyer RP, Bauer JE, Grottoli AG (2013) Carbon isotope biogeochemistry of tropical small mountainous river, estuarine, and coastal systems of Puerto Rico. Biogeochemistry 112:589–612. doi:10.1007/s10533-012-9751-y

    Article  Google Scholar 

  • Nadeau MJ, Grootes PM, Schleicher M, Hasselberg P, Rieck A, Bitterling M (1998) Sample throughput and data quality at the Leibniz-Labor AMS facility. Radiocarbon 40:239–245

    Google Scholar 

  • Ocampo CJ, Sivapalan M, Oldham C (2006) Hydrological connectivity of upland-riparian zones in agricultural catchments: implications for runoff generation and nitrate transport. J Hydrol 331:643–658. doi:10.1016/j.jhydrol.2006.06.010

    Article  Google Scholar 

  • Palmer SM, Hope D, Billett MF, Dawson JJC, Bryant CL (2001) Sources of organic and inorganic carbon in a headwater stream: evidence from carbon isotope studies. Biogeochemistry 52:321–338

    Article  Google Scholar 

  • Pacific VJ, Jencso KG, McGlynn BL (2010) Variable flushing mechanisms and landscape structure control stream DOC export during snowmelt in a set of nested catchments. Biogeochemistry 99:193–211. doi:10.1007/s10533-009-9401-1

    Article  Google Scholar 

  • Raymond PA (2005) The composition and transport of organic carbon in rainfall: insights from the natural (13C and 14C) isotopes of carbon. Geophys Res Lett 32:L14402. doi:10.1029/2005GL022879

    Article  Google Scholar 

  • Raymond PA, Bauer JE, Caraco NF, Cole JJ, Longworth B, Petsch ST (2004) Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers. Mar Chem 92:353–366. doi:10.1016/j.marchem.2004.06.036

    Article  Google Scholar 

  • Raymond PA, Hartman J, Lauerwald R, Sobek S, McDonald C, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359. doi:10.1038/nature12760

    Article  Google Scholar 

  • Raymond PA, Hopkinson CS (2003) Ecosystem modulation of dissolved carbon age in a temperate marsh-dominated estuary. Ecosystems 6:694–705. doi:10.1007/s10021-002-0213-6

    Article  Google Scholar 

  • Raymond PA, Saiers JE (2010) Event controlled DOC export from forested watersheds. Biogeochemistry 100:197–209. doi:10.1007/s10533-010-9416-7

    Article  Google Scholar 

  • Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL (2002) Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416:617–620

    Article  Google Scholar 

  • Rinke K, Kuehn B, Bocaniov S, Wendt-Potthoff K, Büttner O, Tittel J, Schultze M, Herzsprung P, Rönicke H, Rink K, Rinke K, Dietze M, Matthes M, Paul L, Friese K (2013) Reservoirs as sentinels of catchments: the Rappbode Reservoir Observatory (Harz Mountains, Germany). Environ Earth Sci 69:523–536. doi:10.1007/s12665-013-2464-2

    Article  Google Scholar 

  • Robin V, Knapp H, Bork HR, Nelle O (2013) Complementary use of pedoanthracology and peat macro-charcoal analysis for fire history assessment: illustration from central Germany. Quat Int 289:78–87. doi:10.1016/quaint.2012.03.031

    Article  Google Scholar 

  • Sanderman J, Amundson R (2008) A comparative study of dissolved organic carbon transport and stabilization in California forest and grassland soil. Biogeochemistry 89:309–327. doi:10.1007/s10533-008-9221-8

    Article  Google Scholar 

  • Sanderman J, Lohse KA, Baldock JA, Amundson R (2009) Linking soils and streams: sources and chemistry of dissolved organic matter in a small coastal watershed. Water Resour Res 45:W03418. doi:10.1029/2008WR006977

    Article  Google Scholar 

  • Schiff SL, Aravena R, Trumbore SE, Hinton MJ, Elgood R, Dillon PJ (1997) Export of DOC from forested catchments on the Precambrian Shield of Central Ontario: clues from 13C and 14C. Biogeochemistry 36:43–65

    Article  Google Scholar 

  • Sickman JO, DiGiorgio CL, Davisson ML, Lucero DM, Bergamaschi B (2010) Identifying sources of dissolved organic carbon in agriculturally dominated rivers using radiocarbon age dating: Sacramento-San Joaquin River Basin, California. Biogeochemistry 99:79–96. doi:10.1007/s10533-009-9391-z

    Article  Google Scholar 

  • Stieglitz M, Shaman J, McNamara J, Engel V, Shanley J, Kling GW (2003) An approach to understanding hydrologic connectivity on the hillslope and the implications for nutrient transport. Global Biogeochem Cycles 17:1105. doi:10.1029/2003GB002041

    Article  Google Scholar 

  • Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363

    Google Scholar 

  • Tittel J, Büttner O, Freier K, Heiser A, Sudbrack R, Ollesch G (2013) The age of terrestrial carbon export and rainfall intensity in a temperate river headwater system. Biogeochemistry 115:53–63. doi:10.1007/s10533-013-9896-3

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the staff at the Leibniz-Laboratory Kiel and at the Stable Isotope Laboratory Flagstaff for analysing the carbon isotopes. Ute Link, Yvonne Rosenlöcher, Erika Ruschak and Ina Siebert supported the field sampling and lab work. Stefan Heider derived the topographic data and prepared the map. We also hereby thank the State Reservoir Administration Landestalsperrenbetrieb Sachsen-Anhalt for data on precipitation and snow packs. Discharges were provided by the State Administration of Flood Protection and Water Management, LHW Sachsen-Anhalt. Comments by Christopher D. Evans, Matthias Koschorreck, Michael Rode and two reviewers greatly improved the manuscript. This work was financially supported by the Federal Ministry of Education and Research (TALKO 02WT1290A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Tittel.

Additional information

Responsible Editor: Chris D Evans.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tittel, J., Müller, C., Schultze, M. et al. Fluvial radiocarbon and its temporal variability during contrasting hydrological conditions. Biogeochemistry 126, 57–69 (2015). https://doi.org/10.1007/s10533-015-0137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-015-0137-9

Keywords

Navigation