Skip to main content
Log in

A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

In recent years, litter decomposition studies have begun to move beyond the concept of mass loss to consider the fate of fresh and pyrolized decomposing plant material in the ecosystem. However, these concepts have yet to be incorporated into conceptual models of litter decomposition. Understanding how fresh and pyrolized plant litter chemical traits control the partitioning of mass loss to dissolved organic carbon (DOC) leaching and respiration to CO2 would help to inform models of litter-soil-atmosphere carbon (C) cycling. To test these controls, we incubated five fresh and one pyrolized leaf litters with differing chemistry and measured DOC and CO2 fluxes as well as changes in substrate and dissolved organic matter (DOM) chemistry over time using Fourier transformed infrared spectroscopy and wet chemistry. We found that the amount of hot water extractable C was a strong predictor of initial DOC leaching, while the lignocellulose index [Lignin/(Lignin + α-Cellulose)] was a strong inverse predictor of later stage DOC:CO2 partitioning. Changes in substrate and DOM chemistry indicated a progression of substrate availability for leaching: from soluble plant components, to partially decomposed cellulose and lignin, to microbial products. Based on these results we developed a new conceptual model that demonstrates how chemical traits of fresh and pyrolyzed plant litter can be used to predict the fate of aboveground organic matter decomposition and form a better linkage between aboveground decomposition and terrestrial ecosystem C cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aber JD, Melillo JM, McClaugherty CA (1990) Predicting long-term patterns of mass-loss, nitrogen dynamics, and soil organic-matter formation from initial fine litter chemistry in temperate forest ecosystems. Can J Bot-Revue Can Bot 68(10):2201–2208

    Article  Google Scholar 

  • Adair EC, Parton WJ, Del Grosso SJ, Silver WL, Harmon ME, Hall SA, Burke IC, Hart SC (2008) Simple three-pool model accurately describes patterns of long-term litter decomposition in diverse climates. Glob Change Biol 14(11):2636–2660. doi:10.1111/j.1365-2486.2008.01674.x

    Google Scholar 

  • Aerts R (1997) Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79(3):439–449. doi:10.2307/3546886

    Article  Google Scholar 

  • Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally, altered Pinus resinosa (Red Pine) wood. Org Geochem 33(9):1093–1109

    Article  Google Scholar 

  • Berg B, Matzner E (1997) Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems. Environ Rev 5(1):1–25. doi:10.1139/a96-017

    Article  Google Scholar 

  • Berg B, McClaugherty C (2003) Plant litter. Decomposition, humus formation, carbon sequestration. Springer, Berlin

    Google Scholar 

  • Bocock KL, Gilbert OJW (1957) The disappearance of leaf litter under different woodland conditions. Plant Soil 9(2):179–185. doi:10.1007/BF01398924

    Article  Google Scholar 

  • Calderon FJ, McCarty GW, Reeves JB (2006) Pyrolisis-MS and FT-IR analysis of fresh and decomposed dairy manure. J Anal Appl Pyrol 76(1–2):14–23. doi:10.1016/j.jaap.2005.06.009

    Article  Google Scholar 

  • Chapin FS, Matson PA, Mooney HA (2002) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Cleveland CC, Liptzin D (2007) C : n : P stoichiometry in soil: is there a “Redfield ratio” for the microbial biomass? Biogeochemistry 85(3):235–252. doi:10.1007/s10533-007-9132-0

    Article  Google Scholar 

  • Cleveland CC, Nemergut DR, Schmidt SK, Townsend AR (2007) Increases in soil respiration following labile carbon additions linked to rapid shifts in soil microbial community composition. Biogeochemistry 82(3):229–240. doi:10.1007/s10533-006-9065-z

    Article  Google Scholar 

  • Cotrufo MF, del Galdo I, Piermatteo D (2009) Litter decomposition: concepts, methods and future perspectives. In: Kutsch WL, Bahn M, Heinemeyer A (eds) Soil carbon dynamics: an integrated methodology. Cambridge University Press, Cambridge, pp 76–90

    Google Scholar 

  • Cotrufo MF, Wallenstein MD, Boot CM, Denef K, Paul E (2013) The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob Change Biol 19(4):988–995. doi:10.1111/gcb.12113

    Article  Google Scholar 

  • Coûteaux M-M, Mousseau M, Célérier M-L, Bottner P (1991) Increased atmospheric CO2 and litter quality: decomposition of sweet chestnut leaf litter with animal food webs of different complexities. Oikos 61(1):54–64. doi:10.2307/3545406

    Article  Google Scholar 

  • Don A, Kalbitz K (2005) Amounts and degradability of dissolved organic carbon from foliar litter at different decomposition stages. Soil Biol Biochem 37(12):2171–2179. doi:10.1016/j.soilbio.2005.03.019

    Article  Google Scholar 

  • Flannigan MD, Stocks BJ, Wotton BM (2000) Climate change and forest fires. Sci Total Environ 262(3):221–229. doi:10.1016/s0048-9697(00)00524-6

    Article  Google Scholar 

  • Foereid B, Lehmann J, Major J (2011) Modeling black carbon degradation and movement in soil. Plant Soil 345(1–2):223–236. doi:10.1007/s11104-011-0773-3

    Article  Google Scholar 

  • Galletti GC, Reeves JB, Bloomfield J, Vogt KA, Vogt DJ (1993) Analysis of leaf and fine-root litter from a subtropical montane rain-forest by pyrolysis-gas chromatography mass-spectrometry. J Anal Appl Pyrol 27(1):1–14. doi:10.1016/0165-2370(93)80018-u

    Article  Google Scholar 

  • Gallo ME, Lauber CL, Cabaniss SE, Waldrop MP, Sinsabaugh RL, Zak DR (2005) Soil organic matter and litter chemistry response to experimental N deposition in northern temperate deciduous forest ecosystems. Glob Change Biol 11(9):1514–1521. doi:10.1111/j.1365-2486.2005.001001.x

    Article  Google Scholar 

  • Grandy AS, Neff JC (2008) Molecular C dynamics downstream: the biochemical decomposition sequence and its impact on soil organic matter structure and function. Sci Total Environ 404(2–3):297–307. doi:10.1016/j.scitotenv.2007.11.013

    Article  Google Scholar 

  • Gray CM, Fierer N (2012) Impacts of nitrogen fertilization on volatile organic compound emissions from decomposing plant litter. Glob Change Biol 18(2):739–748. doi:10.1111/j.1365-2486.2011.02569.x

    Article  Google Scholar 

  • Haberhauer G, Rafferty B, Strebl F, Gerzabek MH (1998) Comparison of the composition of forest soil litter derived from three different sites at various decompositional stages using FTIR spectroscopy. Geoderma 83(3–4):331–342. doi:10.1016/s0016-7061(98)00008-1

    Article  Google Scholar 

  • He Z, Mao J, Honeycutt CW, Ohno T, Hunt JF, Cade-Menun BJ (2009) Characterization of plant-derived water extractable organic matter by multiple spectroscopic techniques. Biol Fertil Soils 45(6):609–616. doi:10.1007/s00374-009-0369-8

    Article  Google Scholar 

  • Hessen DO, Agren GI, Anderson TR, Elser JJ, De Ruiter PC (2004) Carbon, sequestration in ecosystems: the role of stoichiometry. Ecology 85(5):1179–1192. doi:10.1890/02-0251

    Article  Google Scholar 

  • Johansson MB, Kogel I, Zech W (1986) Changes in the lignin fraction of spruce and pine needle litter during decomposition as studied by some chemical methods. Soil Biol Biochem 18(6):611–619. doi:10.1016/0038-0717(86)90084-2

    Article  Google Scholar 

  • Kaiser K, Guggenberger G (2000) The role of DOM sorption to mineral surfaces in the preservation of organic matter in soils. Org Geochem 31(7–8):711–725. doi:10.1016/s0146-6380(00)00046-2

    Article  Google Scholar 

  • Kaiser K, Kalbitz K (2012) Cycling downwards - dissolved organic matter in soils. Soil Biol Biochem 52:29–32. doi:10.1016/j.soilbio.2012.04.002

    Article  Google Scholar 

  • Kalbitz K, Schmerwitz J, Schwesig D, Matzner E (2003) Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113(3–4):273–291. doi:10.1016/S0016-7061(02)00365-8

    Article  Google Scholar 

  • Kalbitz K, Schwesig D, Rethemeyer J, Matzner E (2005) Stabilization of dissolved organic matter by sorption to the mineral soil. Soil Biol Biochem 37(7):1319–1331. doi:10.1016/j.soilbio.2004.11.028

    Article  Google Scholar 

  • Kalbitz K, Kaiser K, Bargholz J, Dardenne P (2006) Lignin degradation controls the production of dissolved organic matter in decomposing foliar litter. Eur J Soil Sci 57(4):504–516. doi:10.1111/j.1365-2389.2006.00797.x

    Article  Google Scholar 

  • Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci USA 105(33):11823–11826. doi:10.1073/pnas.0802891105

    Article  Google Scholar 

  • Kiikkila O, Kitunen V, Spetz P, Smolander A (2012) Characterization of dissolved organic matter in decomposing Norway spruce and silver birch litter. Eur J Soil Sci 63(4):476–486. doi:10.1111/j.1365-2389.2012.01457.x

    Article  Google Scholar 

  • Klotzbucher T, Kaiser K, Guggenberger G, Gatzek C, Kalbitz K (2011) A new conceptual model for the fate of lignin in decomposing plant litter. Ecology 92(5):1052–1062

    Article  Google Scholar 

  • Knicker H (2011) Pyrogenic organic matter in soil: its origin and occurrence, its chemistry and survival in soil environments. Quatern Int 243(2):251–263. doi:10.1016/j.quaint.2011.02.037

    Article  Google Scholar 

  • Lammers K, Arbuckle-Keil G, Dighton J (2009) MIR study of the changes in carbohydrate chemistry of three New Jersey pine barrens leaf litters during simulated control burning. Soil Biol Biochem 41(2):340–347. doi:10.1016/j.soilbio.2008.11.005

    Article  Google Scholar 

  • Landgraf D, Leinweber P, Makeschin F (2006) Cold and hot water-extractable organic matter as indicators of litter decomposition in forest soils. J Plant Nutr Soil Sci 169(1):76–82. doi:10.1002/jpin.200521711

    Article  Google Scholar 

  • Legendre P (1999) Anderson MJ (1999) Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments (vol 69, pg 1. Ecol Monogr 69(4):512

    Google Scholar 

  • Li LJ, Zeng DH, Yu ZY, Fan ZP, Yang D, Liu YX (2011) Impact of litter quality and soil nutrient availability on leaf decomposition rate in a semi-arid grassland of Northeast China. J Arid Environ 75(9):787–792. doi:10.1016/j.jaridenv.2011.04.009

    Article  Google Scholar 

  • Magill AH, Aber JD (2000) Dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition. Soil Biol Biochem 32(5):603–613. doi:10.1016/s0038-0717(99)00187-x

    Article  Google Scholar 

  • Major J, Lehmann J, Rondon M, Goodale C (2010) Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob Change Biol 16(4):1366–1379. doi:10.1111/j.1365-2486.2009.02044.x

    Article  Google Scholar 

  • Manzoni S, Taylor P, Richter A, Porporato A, Agren GI (2012) Environmental and stoichiometric controls on microbial carbon-use efficiency in soils. New Phytol 196(1):79–91. doi:10.1111/j.1469-8137.2012.04225.x

    Article  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63(3):621–626. doi:10.2307/1936780

    Article  Google Scholar 

  • Moorhead DL, Lashermes G, Sinsabaugh RL, Weintraub MN (2013) Calculating co-metabolic costs of lignin decay and their impacts on carbon use efficiency. Soil Biol Biochem 66:17–19. doi:10.1016/j.soilbio.2013.06.016

    Article  Google Scholar 

  • Novak JM, Busscher WJ, Laird DL, Ahmedna M, Watts DW, Niandou MAS (2009) Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci 174(2):105–112. doi:10.1097/SS.0b013e3181981d9a

    Article  Google Scholar 

  • Oksanen J, F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, and H. Wagner (2013) Vegan Community Ecology Package, Version 2.0-10

  • Oren A, Chefetz B (2012) Sorptive and desorptive fractionation of dissolved organic matter by mineral soil matrices. J Environ Qual 41(2):526–533. doi:10.2134/jeq2011.0362

    Article  Google Scholar 

  • Osono T, Takeda H (2005) Limit values for decomposition and convergence process of lignocellulose fraction in decomposing leaf litter of 14 tree species in a cool temperate forest. Ecol Res 20(1):51–58. doi:10.1007/s112840-004-0011-z

    Article  Google Scholar 

  • Preston CM, Trofymow JA, Sayer BG, Niu JN (1997) C-13 nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning investigation of the proximate-analysis fractions used to assess litter quality in decomposition studies. Can J Bot-Rev Can Bot 75(9):1601–1613

    Article  Google Scholar 

  • Preston CM, Nault JR, Trofymow JA (2009a) Chemical changes during 6 years of decomposition of 11 litters in some canadian forest sites. Part 2. C-13 Abundance, solid-state c-13 nmr spectroscopy and the meaning of “lignin”. Ecosystems 12(7):1078–1102. doi:10.1007/s10021-009-9267-z

    Article  Google Scholar 

  • Preston CM, Nault JR, Trofymow JA, Smyth C, Grp CW (2009b) Chemical changes during 6 years of decomposition of 11 litters in some canadian forest sites. part 1. elemental composition, tannins, phenolics, and proximate fractions. Ecosystems 12(7):1053–1077. doi:10.1007/s10021-009-9266-0

    Article  Google Scholar 

  • Qualls RG, Haines BL (1991) Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology 72(1):254–266. doi:10.2307/1938919

    Article  Google Scholar 

  • Rowland AP, Roberts JD (1994) Lignin and cellulose fractionation in decomposition studies using acid-detergent fiber methods. Commun Soil Sci Plant Anal 25(3–4):269–277. doi:10.1080/00103629409369035

    Article  Google Scholar 

  • Rutherford DW, Wershaw RL, Rostad CE, Kelly CN (2012) Effect of formation conditions on biochars: compositional and structural properties of cellulose, lignin, and pine biochars. Biomass Bioenergy 46:693–701. doi:10.1016/j.biombioe.2012.06.026

    Article  Google Scholar 

  • Santos F, Torn MS, Bird JA (2012) Biological degradation of pyrogenic organic matter in temperate forest soils. Soil Biol Biochem 51:115–124. doi:10.1016/j.soilbio.2012.04.005

    Article  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478(7367):49–56. doi:10.1038/nature10386

    Article  Google Scholar 

  • Singh N, Abiven S, Torn MS, Schmidt MWI (2012) Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9(8):2847–2857. doi:10.5194/bg-9-2847-2012

    Article  Google Scholar 

  • Sinsabaugh RL, Manzoni S, Moorhead DL, Richter A (2013) Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling. Ecol Lett 16(7):930–939. doi:10.1111/ele.12113

    Article  Google Scholar 

  • Soong JL, Calderon FJ, Betzen J, Cotrufo MF (2014) Quantification and FTIR characterization of dissolved organic carbon and total dissolved nitrogen leached from litter: a comparison of methods across litter types. Plant Soil 385:125–137. doi:10.1007/s11104-014-2232-4

    Article  Google Scholar 

  • Stewart CE, Zheng JY, Botte J, Cotrufo MF (2013) Co-generated fast pyrolysis biochar mitigates green-house gas emissions and increases carbon sequestration in temperate soils. Glob Change Biol Bioenergy 5(2):153–164. doi:10.1111/gcbb.12001

    Article  Google Scholar 

  • Stocks BJ, Fosberg MA, Lynham TJ, Mearns L, Wotton BM, Yang Q, Jin JZ, Lawrence K, Hartley GR, Mason JA, McKenney DW (1998) Climate change and forest fire potential in Russian and Canadian boreal forests. Clim Change 38(1):1–13. doi:10.1023/a:1005306001055

    Article  Google Scholar 

  • Strobel BW, Hansen HCB, Borggaard OK, Andersen MK, Raulund-Rasmussen K (2001) Composition and reactivity of DOC in forest floor soil solutions in relation to tree species and soil type. Biogeochemistry 56(1):1–26. doi:10.1023/a:1011934929379

    Article  Google Scholar 

  • Tappi (1981) Water solubility of wood and pulp. Test method T204 (or 207). Technical Association of the Pulp and Paper Industry, Atlanta

    Google Scholar 

  • Thomas CD (2010) Climate, climate change and range boundaries. Divers Distrib 16(3):488–495. doi:10.1111/j.1472-4642.2010.00642.x

    Article  Google Scholar 

  • Van Soest PJ, Wine RH (1968) Determination of lignin and cellulose in acid-detergent fiber with permanganate. J Assoc Off Anal Chem 51(4):780

    Google Scholar 

  • Van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sc 74(10):3583–3597. doi:10.3168/jds.S0022-0302(91)78551-2

    Article  Google Scholar 

  • Wang WJ, Dalal RC, Moody PW, Smith CJ (2003) Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biol Biochem 35(2):273–284. doi:10.1016/s0038-0717(02)00274-2

    Article  Google Scholar 

  • White KE, Reeves JB III, Coale FJ (2011) Mid-infrared diffuse reflectance spectroscopy for the rapid analysis of plant root composition. Geoderma 167–68:197–203. doi:10.1016/j.geoderma.2011.08.009

    Article  Google Scholar 

Download references

Acknowledgments

This work would not have been possible without help from D. Rutherford at USGS, C. Rhodes and D. Pierson at USFS, K. Guilbert, D. Reuss, C. Pinney, J. Botte, and M. Jurich at Ecocore. The work was funded by the NSF-DEB grant #0918482, the NSF Graduate Research Fellowship Program and the NSF Research Experience for Teacher program. The analytical work was carried out at the EcoCore analytical services facility at Colorado State University (http://ecocore.nrel.colostate.edu/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer L. Soong.

Additional information

Responsible Editor: Asmeret Asefaw Berhe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soong, J.L., Parton, W.J., Calderon, F. et al. A new conceptual model on the fate and controls of fresh and pyrolized plant litter decomposition. Biogeochemistry 124, 27–44 (2015). https://doi.org/10.1007/s10533-015-0079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-015-0079-2

Keywords

Navigation