Skip to main content

Advertisement

Log in

Climatic and landscape influences on soil moisture are primary determinants of soil carbon fluxes in seasonally snow-covered forest ecosystems

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

A changing climate has the potential to mobilize soil carbon, shifting seasonally snow-covered, forested ecosystems from carbon sinks to sources. To determine the sensitivity of soil carbon fluxes to changes in temperature and moisture, we quantified seasonal and spatial variability of soil carbon dioxide (CO2) fluxes (N = 746) and dissolved organic carbon (DOC) in leachate (N = 260) in high-elevation, mixed conifer forests in Arizona and New Mexico. All sites have cold winters, warm summers, and bimodal soil moisture patterns associated with snowmelt and summer monsoon rainfall. We employed a state factor approach, quantifying how distal controls (parent material, regional climate, topography) interacted with proximal variability in soil temperature (−3 to 26 °C) and moisture (2–76 %) to influence carbon effluxes. Carbon loss was dominated by CO2 flux (250–1220 g C m−2 year−1) rather than leached DOC (7.0–9.4 g C m−2 year−1). Significant differences in mean growing season CO2 flux were associated with parent material and aspect; differences appear to be mediated by how these distal controls influence primarily moisture and secondarily temperature. Across all sites, a multiple linear regression model (MLR) relying on moisture and temperature best described growing season CO2 fluxes (r2 = 0.63, p < 0.001). During winter, the MLR describing soil CO2 flux (r2 = 0.98, p < 0.001) relied on distal factors including snow cover, clay content, and bulk carbon, all factors that influence liquid water content. Our findings highlight the importance of state factors in controlling soil respiration primarily through influencing spatial and temporal heterogeneity in soil moisture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson DM, Banin A (1974) Soil and water and its relationship to the origin of life. Origins of life 6:23–26

    Google Scholar 

  • Anderson-Teixeira KJ, Delong JP, Fox AM, Brese DA, Litvak ME (2011) Differential responses of production and respiration to temperature and moisture drive the carbon balance across a climatic gradient in New Mexico. Glob Change Biol 17:410–424

    Google Scholar 

  • Austin A, Yahdjian L, Stark J, Belnap J, Porporato A, Norton U, Ravetta D, Schaeffer S (2004) Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141(2):221–235

    Google Scholar 

  • Bahn M, Schmitt M, Siegwolf R, Richter A, Bruggemann N (2009) Does photosynthesis affect grassland soil-respired CO2 and its carbon isotope composition on a diurnal timescale? New Phytol 182:451–460

    Google Scholar 

  • Barron-Gafford GA, Scott RL, Jenerette GD, Huxman TE (2011) The relative controls of temperature, soil moisture, and plant functional group on soil CO 2 flux at diel, seasonal, and annual scales. J Geophys Res 116(G1):G01023

    Google Scholar 

  • Barron-Gafford GA, Cable JM, Bentley LP, Scott RL, Huxman TE, Jenerette GD, Ogle K (2014) Quantifying the timescales over which exogenous and endogenous conditions affect soil respiration. New Phytol. doi:10.1111/nph.12675

    Google Scholar 

  • Bennington CC, Thayne WV (1994) Use and misuse of mixed model analysis of variance in ecological studies. Ecology 75(3):717–722

    Google Scholar 

  • Bishop K, Seibert J, Köhler S, Laudon H (2004) Resolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistry. Hydrol Process 18(1):185–189

    Google Scholar 

  • Blankinship JC, Hart SC (2012) Consequences of manipulated snow cover on soil gaseous emission and N retention in the growing season: a meta-analysis. Ecosphere 3(1):1. doi:10.1890/ES11-00225.1

    Google Scholar 

  • Bowling DR, Tans PP, Monson RK (2001) Partitioning net ecosystem carbon exchange with isotopic fluxes of CO2. Glob Change Biol 7(2):127–145

    Google Scholar 

  • Bowling DR, McDowell NG, Bond BJ, Law BE, Ehleringer JR (2002) C-13 content of ecosystem respiration is linked to precipitation and vapor pressure deficit. Oecologia 131(1):113–124

    Google Scholar 

  • Brooks PD, Williams MW (1999a) Snowpack controls on nitrogen cycling and export in high elevation catchments. Hydrol Process 13:2177–2190

    Google Scholar 

  • Brooks PD, Williams MW (1999b) Snowpack controls on nitrogen cycling and export in seasonally snow-covered catchments. Hydrol Process 13(14–15):2177–2190

    Google Scholar 

  • Brooks PD, Williams MW, Schmidt SK (1996) Microbial activity under alpine snowpacks, Niwot Ridge. Colorado. Biogeochemistry 32(2):93–113

    Google Scholar 

  • Brooks PD, Schmidt SK, Williams MW (1997) Winter production of CO2 and N2O from alpine tundra: environmental controls and relationship to inter-system C and N fluxes. Oecologia 110(3):403–413

    Google Scholar 

  • Brooks PD, McKnight DM, Bencala KE (1999) The relationship between soil heterotrophic activity, soil dissolved organic carbon (DOC) leachate, and catchment-scale DOC export in headwater catchments. Water Resour Res 35(6):1895–1902

    Google Scholar 

  • Brooks PD, McKnight D, Elder K (2005) Carbon limitation of soil respiration under winter snowpacks: potential feedbacks between growing season and winter carbon fluxes. Glob Change Biol 11(2):231–238

    Google Scholar 

  • Brooks PD, Grogan P, Templer PH, Groffman P, Öquist MG, Schimel J (2011) Carbon and Nitrogen Cycling in Snow-Covered Environments. Geography Compass 5(9):682–699

    Google Scholar 

  • Brown-Mitic C, Shuttleworth WJ, Harlow RC, Petti J, Burke E, Bales R (2007) Seasonal water dynamics of a sky island subalpine forest in semi-arid southwestern United States. J Arid Environ 69(2):237–258

    Google Scholar 

  • Broxton PD, Troch PA, Lyon SW (2009) On the role of aspect to quantify water transit times in small mountainous catchments. Water Resour Res 45(8):W08427

    Google Scholar 

  • Cable JM, Ogle K, Williams DG, Weltzin JF, Huxman TE (2008) Soil Texture Drives Responses of Soil Respiration to Precipitation Pulses in the Sonoran Desert: implications for Climate Change. Ecosystems 11(6):961–979

    Google Scholar 

  • Campbell JL, Ollinger SV, Flerchinger GN, Wicklein H, Hayhoe K, Bailey AS (2010) Past and projected future changes in snowpack and soil frost at the Hubbard Brook Experimental Forest, New Hampshire, USA. Hydrol Process 24:2465–2480

    Google Scholar 

  • Carbone MS, Trumbore SE (2007) Contribution of new photosynthetic assimilates to respiration by perennial grasses and shrubs: residence times and allocation patterns. New Phytol 176:124–135

    Google Scholar 

  • Carbone MS, Czimczik CI, McDuffee KE, Trumbore SE (2007) Allocation and residence time of photosynthetic products in a boreal forest using a low-level C-14 pulse-chase labeling technique. Glob Change Biol 13:466–477

    Google Scholar 

  • Chapin FS, Matson PA, Vitousek PM (2012) Principles of terrestrial ecosystem ecology. Springer, New York

    Google Scholar 

  • Chorover J, Troch PA, Rasmussen C, Brooks PD, Pelletier JD, Breshears DD, Huxman TE, Kurc SA, Lohse KA, McIntosh JC, Meixner T, Schaap MG, Litvak ME, Perdrial J, Harpold A, Durcik M (2011) How Water, carbon, and energy drive critical zone evolution: the Jemez-Santa Catalina Critical Zone Observatory. Vadose Zone Journal 10(3):884–899

    Google Scholar 

  • Clein JS, Schimel JP (1995) Microbial activity of tundra and taiga soils at subzero temperatures. Soil Biol Biochem 27(9):1231–1234

    Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne JL, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G, Shongwe M, Tebaldi C, Weaver AJ, Wehner M (2013) Long-term climate change: projections, commitments and irrev ersibility. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Conant RT, Ryan MG, Agren GI, Birge HE, Davidson EA, Eliasson PE, Evans SE, Frey SD, Giardina CP, Hopkins FM (2011) Temperature and soil organic matter decomposition rates–synthesis of current knowledge and a way forward. Glob Change Biol 17:3392–3404

    Google Scholar 

  • Curiel-Yuste J, Janssens IA, Carrara A, Meiresonne L, Ceulemans R (2003) Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest. Tree Physiol 23(18):1263–1270

    Google Scholar 

  • Davidson EA, Janssens IA (2006) Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440(7081):165–173

    Google Scholar 

  • Decker KLM, Wang D, Waite C, Scherbatskoy T (2003) Snow removal and ambient air temperature effects on forest soil temperatures in northern Vermont. Soil Sci Soc Am J 67(4):1234–1242

    Google Scholar 

  • Dyer JL, Mote TL (2006) Spatial variability and trends in observed snow depth over North America. Geophys Res Lett 33(16):L16503

    Google Scholar 

  • Edwards AMC, Cresser MS (1992) Freezing and its effect on chemical and biological properties of soil. In: Stewart BA (ed) Advances in soil science. Springer, New York, pp 59–79

    Google Scholar 

  • Fahnestock JT, Jones MH, Brooks PD, Walker DA, Welker JM (1998) Winter and early spring CO2 flux from tundra communities of northern Alaska. J Geophys Res 103(D22):29023–29027

    Google Scholar 

  • Fierer N, Schimel JP (2002) Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biol Biochem 34(6):777–787

    Google Scholar 

  • Gaudinski JB, Trumbore SE, Davidson EA, Zheng S (2000) Soil carbon cycling in a temperate forest: radiocarbon-based estimates of residence times, sequestration rates and partitioning of fluxes. Biogeochemistry 51(1):33–69

    Google Scholar 

  • Goff F, Gardner JN (1994) Evolution of a mineralized geothermal system, Valles Caldera, New-Mexico. Econ Geol Bull Soc Econ Geol 89(8):1803–1832

    Google Scholar 

  • Groffman P, Driscoll C, Fahey T, Hardy J, Fitzhugh R, Tierney G (2001a) Colder soils in a warmer world: a snow manipulation study in a northern hardwood forest ecosystem. Biogeochemistry 56(2):135–150

    Google Scholar 

  • Groffman PM, Driscoll CT, Fahey TJ, Hardy JP, Fitzhugh RD, Tierney GL (2001b) Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest. Biogeochemistry 56(2):191–213

    Google Scholar 

  • Groffman PM, Rustad LE, Templer PH, Campbell JL, Christenson LM, Lany NK, Socci AM, Vadeboncoeur MA, Schaberg PG, Wilson GF, Driscoll CT, Fahey TJ, Fisk MC, Goodale CL, Green MB, Hamburg SP, Johnson CE, Mitchell MJ, Morse JL, Pardo LH, Rodenhouse NL (2012) Long-term integrated studies show complex and surprising effects of climate change in the Northern Hardwood Forest. Bioscience 62(12):1056–1066

    Google Scholar 

  • Grogan P, Michelsen A, Ambus P, Jonasson S (2004) Freeze-thaw regime effects on carbon and nitrogen dynamics in sub-arctic heath tundra mesocosms. Soil Biol Biochem 36(4):641–654

    Google Scholar 

  • Grossman RB, Reinsch TG (2002) Bulk density and linear extensibility. In: Dane JH, Topp C (eds) Methods of soil analysis, part 4. Physical Methods Soil Science Society of America, Madison, pp 201–225

    Google Scholar 

  • Gupta SC, Larson WE (1979) Estimating soil water retention characteristics from particle size distribution, organic matter percent, and bulk density. Water Resour Res 15(6):1633–1635

    Google Scholar 

  • Gustafson JR, Brooks PD, Molotch NP, Veatch WC (2010) Estimating snow sublimation using natural chemical and isotopic tracers across a gradient of solar radiation. Water Resour Res 46(12):W12511

    Google Scholar 

  • Haei M, Öquist MG, Buffam I, Ågren A, Blomkvist P, Bishop K, Ottosson Löfvenius M, Laudon H (2010) Cold winter soils enhance dissolved organic carbon concentrations in soil and stream water. Geophys Res Lett 37(8):L08501

    Google Scholar 

  • Hamlet AF, Mote PW, Clark MP, Lettenmaier DP (2005) Effects of temperature and precipitation variability on snowpack trends in the Western United States*. J Clim 18(21):4545–4561

    Google Scholar 

  • Hamlet AF, Mote PW, Clark MP, Lettenmaier DP (2007) Twentieth-century trends in runoff, evapotranspiration, and soil moisture in the Western United States*. J Clim 20(8):1468–1486

    Google Scholar 

  • Hanna AY, Harlan PW, Lewis DT (1982) Soil available water as influenced by landscape position and aspect. Agron. J 74:999–1004

    Google Scholar 

  • Hardy JP, Groffman PM, Fitzhugh RD, Henry KS, Welman AT, Demers JD, Fahey TJ, Driscoll CT, Tierney GL, Nolan S (2001) Snow depth manipulation and its influence on soil frost and water dynamics in a northern hardwood forest. Biogeochemistry 56(2):151–174

    Google Scholar 

  • Harpold A, Brooks PD, Rajagopal S, Heidbuchel I, Jardine A, Stielstra C (2012) Changes in snowpack accumulation and ablation in the intermountain west. Water Resour Res 48(11):W11501

    Google Scholar 

  • Harrysson Drotz S, Tilston EL, Sparrman T, Schleucher J, Nilsson M, Öquist MG (2009) Contributions of matric and osmotic potentials to the unfrozen water content of frozen soils. Geoderma 148(3–4):392–398

    Google Scholar 

  • Harrysson Drotz S, Sparrman T, Schleucher J, Nilsson M, Öquist MG (2010) Effects of soil organic matter composition on unfrozen water content and heterotrophic CO2 production of frozen soils. Geochim Cosmochim Acta 74(8):2281–2290

    Google Scholar 

  • Hayhoe K, Wake CP, Huntington TG, Luo L, Schwartz MD, Sheffield J, Wood E, Anderson B, Bradbury J, DeGaetano A, Troy TJ, Wolfe D (2006) Past and future changes in climate and hydrological indicators in the US Northeast. Clim Dyn 28(4):381–407

    Google Scholar 

  • Hayhoe K, Wake C, Anderson B, Liang X-Z, Maurer E, Zhu J, Bradbury J, DeGaetano A, Stoner AM, Wuebbles D (2007) Regional climate change projections for the Northeast USA. Mitig Adapt Strat Glob Change 13(5–6):425–436

    Google Scholar 

  • Heckman K, Welty-Bernard A, Rasmussen C, Schwartz E (2009) Geologic controls of soil carbon cycling and microbial dynamics in temperate conifer forests. Chem Geol 267:12–23

    Google Scholar 

  • Heidbüchel I, Troch PA, Lyon SW, Weiler M (2012) The master transit time distribution of variable flow systems. Water Resour Res 48(6):W06520

    Google Scholar 

  • Heiken G, Goff F, Stix J, Tamanyu S, Shafiqullah M, Garcia S, Hagan R (1986) Intracaldera volcanic activity, Toledo Caldera and Embayment, Jemez Mountains, New Mexico. J Geophys Res 91(B2):1799–1815

    Google Scholar 

  • Henry HAL (2007) Soil freeze–thaw cycle experiments: trends, methodological weaknesses and suggested improvements. Soil Biol Biochem 39(5):977–986

    Google Scholar 

  • Högberg P, Högberg MN, Göttlicher SG, Betson NR, Keel SG, Metcalfe DB, Campbell C, Schindlbacher A, Hurry V, Lundmark T (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177:220–228

    Google Scholar 

  • Hope D, Billett MF, Cresser MS (1994) A review of the export of carbon in river water: fluxes and processes. Environ Pollut 84(3):301–324

    Google Scholar 

  • Hope D, Billett MF, Cresser MS (1997) Exports of organic carbon in two river systems in NE Scotland. J Hydrol 193(1–4):61–82

    Google Scholar 

  • Hu J, Moore DJP, Burns SP, Monson RK (2010) Longer growing seasons lead to less carbon sequestration by a subalpine forest. Glob Change Biol 16(2):771–783

    Google Scholar 

  • Huntington TG, Richardson AD, McGuire KJ, Hayhoe K (2009) Climate and hydrological changes in the northeastern United States: recent trends and implications for forested and aquatic ecosystems. This article is one of a selection of papers from NE Forests 2100: a synthesis of climate change impacts on forests of the Northeastern US and Eastern Canada. Can J For Res 39(2):199–212

    Google Scholar 

  • Huxman T, Snyder K, Tissue D, Leffler AJ, Ogle K, Pockman W, Sandquist D, Potts D, Schwinning S (2004a) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141(2):254–268

    Google Scholar 

  • Huxman TE, Snyder KA, Tissue D, Leffler AJ, Ogle K, Pockman WT, Sandquist DR, Potts DL, Schwinning S (2004b) Precipitation pulses and carbon fluxes in semiarid and arid ecosystems. Oecologia 141(2):254–268

    Google Scholar 

  • Inglima I, Alberti G, Bertolini T, Vaccari FP, Gioli B, Miglietta F, Cotrufo MF, Peressotti A (2009) Precipitation pulses enhance respiration of Mediterranean ecosystems: the balance between organic and inorganic components of increased soil CO2 flux. Glob Change Biol 15(5):1289–1301

    Google Scholar 

  • Isard SA, Schaetzl RJ (1998) Effects of winter weather conditions on soil freezing in southern Michigan. Phys Geogr 19(1):71–94

    Google Scholar 

  • Janssens IA, Lankreijer H, Matteucci G, Kowalski AS, Buchmann N, Epron D, Pilegaard K, Kutsch W, Longdoz B, Grünwald T (2001) Productivity overshadows temperature in determining soil and ecosystem respiration across European forests. Glob Change Biol 7(3):269–278

    Google Scholar 

  • Jenny H (1941) Factors of soil formation: a system of quantitative pedology. McGraw-Hill, New York. ISBN 0486681289

    Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10(2):423–436

    Google Scholar 

  • Jones Jr, Mulholland PJ (1998) Carbon dioxide variation in a hardwood forest stream: an integrative measure of whole catchment soil respiration. Ecosystems 1(2):183–196

    Google Scholar 

  • Kang S, Doh S, Lee D, Lee D, Jin VL, Kimball JS (2003) Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Glob Change Biol 9(10):1427–1437

    Google Scholar 

  • Kang S, Lee D, Lee J, Running SW (2005) Topographic and climatic controls on soil environments and net primary production in a rugged temperate hardwood forest in Korea. Ecol Res 21(1):64–74

    Google Scholar 

  • Kayler ZE (2008) The methodology, implementation and analysis of the isotopic composition of soil respired CO2 in forest ecological research. PhD, Oregon State University, Corvallis

  • Kieft TL, Soroker E, Firestone MK (1987) Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biol Biochem 19:119–126

    Google Scholar 

  • Kieft TL, White CS, Loftin SR, Aguilar R, Craig JR, Skaar JA (1998) Temporal dynamics in soil carbon and nitrogen resources at a grassland-shrubland ecotone. Ecology 79:671–683

    Google Scholar 

  • Kindler R, Siemens JAN, Kaiser K, Walmsley DC, Bernhofer C, Buchmann N, Cellier P, Eugster W, Gleixner G, Grünwald T, Heim A, Ibrom A, Jones SK, Jones M, Klumpp K, Kutsch W, Larsen KS, Lehuger S, Loubet B, McKenzie R, Moors E, Osborne B, Pilegaard KIM, Rebmann C, Saunders M, Schmidt MWI, Schrumpf M, Seyfferth J, Skiba UTE, Soussana J-F, Sutton MA, Tefs C, Vowinckel B, Zeeman MJ, Kaupenjohann M (2011) Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob Change Biol 17(2):1167–1185

    Google Scholar 

  • Kurc SA, Small EE (2007) Soil moisture variations and ecosystem-scale fluxes of water and carbon in semiarid grassland and shrubland. Water Resour Res 43(6):W06416

    Google Scholar 

  • Law BE, Ryan MG, Anthoni PM (1999) Seasonal and annual respiration of a ponderosa pine ecosystem. Glob Change Biol 5(2):169–182

    Google Scholar 

  • Lee MS, Nakane K, Nakatsubo T, Mo WH, Koizumi H (2002) Effects of rainfall events on soil CO2 flux in a cool temperate deciduous broad-leaved forest. Ecol Res 17(3):401–409

    Google Scholar 

  • Lemke P, Ren J, Alley RB, Allison I, Carrasco J, Flato G, Fujii Y, Kaser G, Mote P, Thomas RH, Zhang T (2007) Observations: changes in snow, ice and frozen ground. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Liptzin D, Williams MW, Helmig D, Seok B, Filippa G, Chowanski K, Hueber J (2009) Process-level controls on CO2 fluxes from a seasonally snow-covered subalpine meadow soil, Niwot Ridge, Colorado. Biogeochemistry 95(1):151–166

    Google Scholar 

  • Liu F, Parmenter R, Brooks PD, Conklin MH, Bales RC (2008) Seasonal and interannual variation of streamflow pathways and biogeochemical implications in semi-arid, forested catchments in Valles Caldera, New Mexico. Ecohydrology 1(3):239–252

  • Lundquist JD, Neiman PJ, Martner B, White AB, Gottas DJ, Ralph FM (2008) Rain versus snow in the Sierra Nevada, California: comparing doppler profiling radar and surface observations of melting level. J Hydrometeorol 9(2):194–211

    Google Scholar 

  • Massman WJ, Lee X (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric For Meteorol 113(1–4):121–144

    Google Scholar 

  • Massman WJ, Sommerfeld RA, Mosier AR, Zeller KF, Hehn TJ, Rochelle SG (1997) A model investigation of turbulence-driven pressure-pumping effects on the rate of diffusion of CO2, N2O, and CH4 through layered snowpacks. J Geophys Res 102(D15):18851–18863

    Google Scholar 

  • McCulley RL, Boutton TW, Archer SR (2007) Soil respiration in a subtropical savanna parkland: response to water additions. Soil Sci Soc Am J 71:820–828

    Google Scholar 

  • Mellander P-E, Ottosson-Löfvenius M, Laudon H (2007) Climate change impact on snow and soil temperature in boreal Scots pine stands. Clim Change 85:179–193

    Google Scholar 

  • Miller AE, Schimel JP, Meixner T, Sickman JO, Melack JM (2005) Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biol Biochem 37:2195–2204

    Google Scholar 

  • Milyukova IM, Kolle O, Varlagin AV, Vygodskaya NN, Schulze ED, Lloyd J (2002) Carbon balance of a southern taiga spruce stand in European Russia. Tellus B 54(5):429–442

    Google Scholar 

  • Molotch NP, Brooks PD, Burns SP, Litvak M, Monson RK, McConnell JR, Musselman K (2009) Ecohydrological controls on snowmelt partitioning in mixed-conifer sub-alpine forests. Ecohydrology 2:129–142. doi:10.1002/eco.48

    Google Scholar 

  • Monson RK, Sparks JP, Rosenstiel TN, Scott-Denton LE, Huxman TE, Harley PC, Turnipseed AA, Burns SP, Backlund B, Hu J (2005) Climatic influences on net ecosystem CO2 exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. Oecologia 146(1):130–147

    Google Scholar 

  • Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW, Schmidt SK (2006) Winter forest soil respiration controlled by climate and microbial community composition. Nature 439(7077):711–714

    Google Scholar 

  • Mote PW, Hamlet AF, Clark MP, Lettenmaier DP (2005) Declining mountain snowpack in western North America. Bull Am Meteorol Soc 86(1):39–49

    Google Scholar 

  • Neff JC, Asner GP (2001) Dissolved organic carbon in terrestrial ecosystems: synthesis and a Model. Ecosystems 4(1):29–48

    Google Scholar 

  • Nobrega S, Grogan P (2007) Deeper snow enhances winter respiration from both plant-associated and bulk soil carbon pools in Birch Hummock Tundra. Ecosystems 10(3):419–431

    Google Scholar 

  • Öquist MG, Laudon H (2008) Winter soil frost conditions in boreal forests control growing season soil CO2 concentration and its atmospheric exchange. Glob Change Biol 14(12):2839–2847

    Google Scholar 

  • Pacific VJ, McGlynn BL, Riveros-Iregui DA, Welsch DL, Epstein HE (2011) Landscape structure, groundwater dynamics, and soil water content influence soil respiration across riparian-hillslope transitions in the Tenderfoot Creek experimental forest, Montana. Hydrol Process 25(5):811–827

    Google Scholar 

  • Panikov NS, Flanagan PW, Oechel WC, Mastepanov MA, Christensen TR (2006) Microbial activity in soils frozen to below −39°C. Soil Biol Biochem 38(4):785–794

    Google Scholar 

  • Parmenter R, Steffen A, Craig D (2007) An overview of the Valles Cadera National Preserve: the natural and cultural resources. New Mexico Geological Society Guidebook 58:147–154

    Google Scholar 

  • Pelletier JD, Rasmussen C (2009) Geomorphically based predictive mapping of soil thickness in upland watersheds. Water Resour Res 45(9):W09417

    Google Scholar 

  • Perdrial J, McIntosh J, Harpold A, Brooks PD, Zapata-Rios X, Ray J, Meixner T, Kanduc T, Litvak M, Troch PA, Chorover J (2014) Stream water carbon controls in seasonally snow-covered mountain catchments: impact of inter-annual variability of water fluxes, catchment aspect and seasonal processes. Biogeochemistry 118:273–290

    Google Scholar 

  • Perry RH, Chilton CH, Kirkpatrick SD (1963) Perry’s chemical engineers’ handbook. McGraw-Hill, New York

    Google Scholar 

  • Plain C, Gerant D, Maillard P, Dannoura M, Dong YW, Zeller B, Priault P, Parent F, Epron D (2009) Tracing of recently assimilated carbon in respiration at high temporal resolution in the field with a tuneable diode laser absorption spectrometer after in situ (CO2)-C-13 pulse labelling of 20-year-old beech trees. Tree Physiol 29:1433–1445

    Google Scholar 

  • Post WM, Emanuel WR, Zinke PJ, Stangenberger AG (1982) Soil carbon pools and world life zones. Nature 298(5870):156–159

    Google Scholar 

  • Potts DL, Huxman TE, Cable JM, English NB, Ignace DD, Eilts JA, Mason MJ, Weltzin JF, Williams DG (2006) Antecedent moisture and seasonal precipitation influence the response of canopy-scale carbon and water exchange to rainfall pulses in a semi-arid grassland. New Phytol 170(4):849–860

    Google Scholar 

  • Raich JW, Potter C (1995) Global patterns of carbon dioxide emissions from soils. Glob Biogeochem Cycles 9:23–36

    Google Scholar 

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B 44(2):81–99

    Google Scholar 

  • Regonda SK, Rajagopalan B, Clark M, Pitlick J (2005) Seasonal Cycle Shifts in Hydroclimatology over the Western United States. J Clim 18(2):372–384

    Google Scholar 

  • Riveros-Iregui DA, McGlynn BL (2009) Landscape structure control on soil CO2 flux variability in complex terrain: scaling from point observations to watershed scale fluxes. J Geophys Res 114(G2):G02010

    Google Scholar 

  • Rühr N, Offermann C, Gessler A, Winkler JB, Ferrio JP, Buchmann N, Barnard RL (2009) Effects of drought on allocation of recent carbon: from beech leaves to soil respiration. New Phytol 184:950–961

    Google Scholar 

  • Schimel JP, Mikan C (2005) Changing microbial substrate use in Arctic tundra soils through a freeze-thaw cycle. Soil Biol Biochem 37:1411–1418

    Google Scholar 

  • Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, Baker D, Bondeau A, Canadell J, Churkina G, Cramer W, Denning AS, Field CB, Friedlingstein P, Goodale C, Heimann M, Houghton RA, Melillo JM, Moore BI, Murdiyarso D, Noble I, Pacala SW, Prentice IC, Raupach MR, Rayner PJ, Scholes RJ, Steffen WL, Wirth C (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172

    Google Scholar 

  • Schimel D, Kittel TGF, Running S, Monson R, Turnipseed A, Anderson D (2002) Carbon sequestration studied in western US mountains. EOS, Trans Am Geophys Union 83(40):445–449

    Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Google Scholar 

  • Scott RL, Jenerette GD, Potts DL, Huxman TE (2009) Effects of seasonal drought on net carbon dioxide exchange from a woody-plant-encroached semiarid grassland. J Geophys Res 114(G4):G04004

    Google Scholar 

  • Sommerfeld RA, Mosier AR, Musselman RC (1993) CO2, CH4 and N2O flux through a Wyoming snowpack and implications for global budgets. Nature 361(6408):140–142

    Google Scholar 

  • Sparrman T, Oquist M, Klemedtsson L, Schleucher J, Nilsson M (2004) Quantifying unfrozen water in frozen soil by high-field H-2 NMR. Environ Sci Technol 38(20):5420–5425

    Google Scholar 

  • Stähli M, Stadler D (1997) Measurement of water and solute dynamics in freezing soil columns with time domain reflectometry. J Hydrol 195(195):352–369

    Google Scholar 

  • Stieglitz M, Dery SJ, Romanovsky VE, Osterkamp TE (2003) The role of snow cover in the warming of arctic permafrost. Geophys Res Lett. doi:10.1029/2003GL017337

    Google Scholar 

  • Sturm M, McFadden JP, Liston GE, Chapin FS, Racine CH, Holmgren J (2001) Snow-shrub interactions in Arctic tundra: a hypothesis with climatic implications. J Clim 14(3):336–344

    Google Scholar 

  • Torn MS, Trumbore SE, Chadwick OA, Vitousek PM, Hendricks DM (1997) Mineral control of soil organic carbon storage and turnover. Nature 389(6647):170–173

    Google Scholar 

  • Trumbore SE (1993) Comparison of carbon dynamics in tropical and temperate soils using radiocarbon measurements. Global Biogeochem Cycles 7(2):275–290

    Google Scholar 

  • Van Gestel M (1991) Microbial biomass responses to soil drying and rewetting: the fate pf fast- and Slow-growing microorganisms in soils from different climates. Soil Biol Biochem 25(1):109–123

    Google Scholar 

  • Vargas R, Baldocchi DD, Bahn M, Hanson PJ, Hosman KP, Kulmala L, Pumpanen J, Yang B (2011) On the multi-temporal correlation between photosynthesis and soil CO2 flux: reconciling lags and observations. New Phytol 191(4):1006–1017

    Google Scholar 

  • Venalainen A, Tuomenvirta H, Heikinheimo M, Kellomaki S, Peltola H, Strandman H, Vaisanen H (2001) Impact of climate change on soil frost under snow cover in a forested landscape. Clim Res 17(1):63–72

    Google Scholar 

  • Vereecken H, Maes J, Feyen J, Darius P (1989) Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci 148(6):389–403

    Google Scholar 

  • Von Lutzow M, Kogel-Knabner I, Ludwig B, Matzner E, Flessa H, Ekschmitt K, Guggenberger G, Marschner B, Kalbitz K (2008) Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model. J Plant Nutr Soil Sci 171:111–124

    Google Scholar 

  • Wang CK, Bond-Lamberty B, Gower ST (2002) Soil surface CO2 flux in a boreal black spruce fire chronosequence. J Geophys Res 107(D3):8224. doi:10.1029/2001JD000861

    Google Scholar 

  • Western AW, Grayson RB, Blöschl G, Willgoose GR, McMahon TA (1999) Observed spatial organization of soil moisture and its relation to terrain indices. Water Resour Res 35(3):797–810

    Google Scholar 

  • Wood TE, Detto M, Silver WL (2013) Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest. PLoS One 8(12):e80965. doi:10.1371/journal.pone.0080965

    Google Scholar 

  • Zapata-Rios X, Troch P, Broxton P, McIntosh J, Harman C, Harpold A, Brooks PD (2012) Water storage dynamics in high elevation semi-arid catchments. Geol Soc Am Abstr progr 44(6):67

Download references

Acknowledgments

This research was funded by the National Science Foundation (NSF) Critical Zone Observatory (CZO) awards to Jemez-Catalina (EAR 0724958 and 1331408), Reynolds Creek (EAR 1331872), Boulder Creek (EAR 0724960); the Department of Energy Award # DE-SC0006968; the National Science Foundation Award # EPS-0814387; NASA Award # NNX11AG91G, and the University of Arizona Water, Environmental, and Energy Solutions program through the Technology and Research Initiative Fund. We extend our gratitude to Tim Corley, Mary Kay Amistadi and Allison Peterson for their assistance and expertise in the laboratory, and to Dr. Tyson Swetnam, Dr. Ingo Heidbüchel, Dr. Erika Gallo, Dr. Adrian Harpold, and all who assisted with field work, data collection, and analyses. We also thank two anonymous reviewers and Dr. Melanie Fisk, Associate Editor, for valuable feedback and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul D. Brooks.

Additional information

Responsible Editor: Melany Fisk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stielstra, C.M., Lohse, K.A., Chorover, J. et al. Climatic and landscape influences on soil moisture are primary determinants of soil carbon fluxes in seasonally snow-covered forest ecosystems. Biogeochemistry 123, 447–465 (2015). https://doi.org/10.1007/s10533-015-0078-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-015-0078-3

Keywords

Navigation