Skip to main content
Log in

Organic matter decomposition: bridging the gap between Rock–Eval pyrolysis and chemical characterization (CPMAS 13C NMR)

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Organic matter (OM) is a key component of soils but information on its chemistry and behavior in soils is still incomplete. Numerous methods are commonly used to characterize and monitor OM dynamics, but only a few include the qualities required to become routine techniques i.e. simple, rapid, accurate and at low cost. Rock–Eval pyrolysis (RE pyrolysis) is a good candidate, as it provides an overview of OM properties by monitoring four components related to the main major classes of organic constituents (from A1 for the labile biological constituents to A4 for the mature refractory fraction). However, a question is still pending: do these four major classes used in the literature reflect a pertinent compositional chemical counterpart? 13C Nuclear Magnetic Resonance Spectroscopy in the solid state (13C CPMAS NMR) has been used to answer this question by collecting information on structural and conformational characteristics of OM. Moreover, in order to avoid the blurring effect of pedogenesis on OM dynamics, a “less complex OM” source, i.e. compost samples, has been used. Results showed significant and high determination coefficients between classes, indices (of transformation of plant biopolymers, humification…) from RE pyrolysis, and the main classes of OM characterized by 13C NMR, e.g. A1 & A2 with labile/easily degradable components (alkyl C et O-alkyl C), A3 & A4 with humified OM (with aromatic C and phenolic C). The R index (contribution of bio-macromolecules) is correlated with phenolic and aromatic C, whereas the I index (related to immature OM) refers to labile––easily degradable components (alkyl C et O-alkyl C). The results confirm the pertinence of RE pyrolysis to monitor OM dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Albrecht R, Joffre R, Gros R, Le Petit J, Terrom G, Perissol C (2008a) Efficiency of near-infrared reflectance spectroscopy to assess and predict the stage of transformation of organic matter in the composting process. Bioresour Technol 99(2):448–455

    Article  Google Scholar 

  • Albrecht R, Ziarelli F, Alarcon-Gutierrez E, Le Petit J, Terrom G, Perissol C (2008b) (13)C solid-state NMR assessment of decomposition pattern during co-composting of sewage sludge and green wastes. Eur J Soil Sci 59(3):445–452

    Article  Google Scholar 

  • Albrecht R, Joffre R, Le Petit J, Terrom G, Perissol C (2009) Calibration of Chemical and Biological Changes in Cocomposting of Biowastes Using Near-Infrared Spectroscopy. Environ Sci Technol 43(3):804–811

    Article  Google Scholar 

  • Albrecht R, Perissol C, Ruaudel F, Le Petit J, Terrom G (2010) Functional changes in culturable microbial communities during a co-composting process: carbon source utilization and co-metabolism. Waste Manag 30(5):764–770

    Article  Google Scholar 

  • Carrie J, Sanei H, Stern G (2012) Standardisation of Rock-Eval pyrolysis for the analysis of recent sediments and soils. Org Geochem 46:38–53

    Article  Google Scholar 

  • Copard Y, Di-Giovanni C, Martaud T, Albéric P, Olivier J-E (2006) Using Rock-Eval 6 pyrolysis for tracking fossil organic carbon in modern environments: implications for the roles of erosion and weathering. Earth Surf Proc Land 31(2):135–153

    Article  Google Scholar 

  • De Bertoldi M, Vallini G, Pera A (1983) The biology of composting: a review. Waste Manage Res 1(2):157–176

    Article  Google Scholar 

  • Disnar JR (1994) Determination of maximum paleotemperatures of burial (MPTB) of sedimentary rocks from pyrolysis data on the associated organic matter: basic principles and practical application. Chem Geol 118(1–4):289–299

    Article  Google Scholar 

  • Disnar JR, Guillet B, Keravis D, Di-Giovanni C, Sebag D (2003) Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Org Geochem 34(3):327–343

    Article  Google Scholar 

  • Epstein E (1997) The science of composting. Technomic Publishing Company, Pennsylvania

    Google Scholar 

  • Espitalie J, Deroo G, Marquis F (1985a) La pyrolyse Rock-Eval et ses applications. Première partie. Oil Gas Sci Technol 40(5):563–579

    Article  Google Scholar 

  • Espitalie J, Deroo G, Marquis F (1985b) La pyrolyse Rock-Eval et ses applications. Deuxième partie. Oil Gas Sci Technol 40(6):755–784

    Article  Google Scholar 

  • Gillespie AW, Sanei H, Diochon A et al (2014) Perennially and annually frozen soil carbon differ in their susceptibility to decomposition: analysis of Subarctic earth hummocks by bioassay, XANES and pyrolysis. Soil Biol Biochem 68:106–116

    Article  Google Scholar 

  • Graz Y, Di-Giovanni C, Copard Y, Elie M, Faure P, Defarge FL, Leveque J, Michels R, Olivier JE (2011) Occurrence of fossil organic matter in modern environments: optical, geochemical and isotopic evidence. Appl Geochem 26(8):1302–1314

    Article  Google Scholar 

  • Hare AA, Kuzyk ZZA, Macdonald RW et al (2014) Characterization of sedimentary organic matter in recent marine sediments from Hudson Bay, Canada, by Rock-Eval pyrolysis. Org Geochem 68:52–60

    Article  Google Scholar 

  • Hetényi M, Nyilas T, Sajgó C (2010) Organic geochemical evidence of late Pleistocene-Holocene environmental changes in the Lake Balaton region (Hungary). Org Geochem 41(9):915–923

    Article  Google Scholar 

  • Inbar Y, Chen Y, Hadar Y (1991) C-13 Cpmas Nmr and Ftir Spectroscopic Analysis of Organic-Matter Transformations During Composting of Solid-Wastes from Wineries. Soil Sci 152(4):272–282

    Article  Google Scholar 

  • Kogel-Knabner I (2000) Analytical approaches for characterizing soil organic matter. Org Geochem 31(7–8):609–625

    Article  Google Scholar 

  • Lafargue E, Marquis F, Pillot D (1998) Rock-Eval 6 applications in hydrocarbon exploration, production, and soil contamination studies. Revue de l’Institut Francais du Petrole 53(4):421–437

    Article  Google Scholar 

  • Marchand C, Lallier-Verges E, Disnar JR, Keravis D (2008) Organic carbon sources and transformations in mangrove sediments: a Rock-Eval pyrolysis approach. Org Geochem 39(4):408–421

    Article  Google Scholar 

  • Massiot D, Fayon F, Capron M, King I, Le Calve S, Alonso B, Durand JO, Bujoli B, Gan ZH, Hoatson G (2002) Modelling one- and two-dimensional solid-state NMR spectra. Magn Reson Chem 40(1):70–76

    Article  Google Scholar 

  • Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832

    Article  Google Scholar 

  • Poot A, Quik JTK, Veld H, Koelmans AA (2009) Quantification methods of Black Carbon: comparison of Rock-Eval analysis with traditional methods. J Chromatogr A 1216(3):613–622

    Article  Google Scholar 

  • Saenger A, Cécillon L, Sebag D, Brun J-J (2013) Soil organic carbon quantity, chemistry and thermal stability in a mountainous landscape: a Rock-Eval pyrolysis survey. Org Geochem 54:101–114

    Article  Google Scholar 

  • Sanchez-Monedero MA, Roig A, Cegarra J, Bernal MP (1999) Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting. Bioresour Technol 70:193–201

    Article  Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kogel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56

    Article  Google Scholar 

  • Schnitzer M (2005) Organic Matter - Principles and Processes. In: Daniel H (ed) Encyclopedia of Soils in the Environment. Elsevier, Oxford, pp 85–93

    Google Scholar 

  • Sebag D, Disnar JR, Guillet B, Di Giovanni C, Verrecchia EP, Durand A (2006) Monitoring organic matter dynamics in soil profiles by ‘Rock-Eval pyrolysis’: bulk characterization and quantification of degradation. Eur J Soil Sci 57(3):344–355

    Article  Google Scholar 

  • Swift RS (1996) Organic matter characterization. In Methods of Soil Analysis. Part 3. Chemical Methods; Soil Science Society of America. Madison, WI 1996:1011–1069

    Google Scholar 

  • Tambach TJ, Veld H, Griffioen J (2009) Influence of HCl/HF treatment on organic matter in aquifer sediments: a Rock-Eval pyrolysis study. Appl Geochem 24(11):2144–2151

    Article  Google Scholar 

  • Tomati U, Madejon E, Galli E (2000) Evolution of humic acid molecular weight as an index of compost stability. Compost Sci Util 8:108–115

    Article  Google Scholar 

  • Vinceslas-Akpa M, Loquet M (1997) Organic matter transformations in lignocellulosic waste products composted or vermicomposted (eisenia fetida andrei): chemical analysis and 13C CPMAS NMR spectroscopy. Soil Biol Biochem 29(3–4):751–758

    Article  Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Flessa H, Guggenberger G, Matzner E, Marschner B (2007) SOM fractionation methods: relevance to functional pools and to stabilization mechanisms. Soil Biol Biochem 39:2183–2207

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Albrecht.

Additional information

Responsible Editor: Matthew Wallenstein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albrecht, R., Sebag, D. & Verrecchia, E. Organic matter decomposition: bridging the gap between Rock–Eval pyrolysis and chemical characterization (CPMAS 13C NMR). Biogeochemistry 122, 101–111 (2015). https://doi.org/10.1007/s10533-014-0033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-014-0033-8

Keywords

Navigation