Skip to main content
Log in

Invasion of a Sphagnum-peatland by Betula spp and Molinia caerulea impacts organic matter biochemistry. Implications for carbon and nutrient cycling

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Peatlands act as a sink of carbon (C) through the accumulation of dead remains of plants. Under global changes triggered by human activities, it is not only the sink capacity of peatland that is in danger, but also the C already stored. Invasion of Sphagnum peatlands, mainly by Molinia caerulea and Betula spp, is a growing preoccupation. This study aims to assess the extent of the influence of this invasion on the biochemical characteristics of the peat. Elemental analysis, sugar and Rock–Eval pyrolysis parameters were measured in 50 cm profiles collected in invaded and intact plots. The results show that oxygen index ratios (OICO2/OICO) can be used to detect new C substrate injection as invading plants have a lower ratio than Sphagnum spp and Sphagnum peat. Total hemicellulosic sugar contents and organic matter (OM) degradation indices (R400, PPI) suggest that the invading plants promote a faster OM decomposition probably through a faster degradability and a relatively higher nutrient content of their litter. Differences in terms of nutrient status between areas of the peatland are suggested to be of great importance in determining the extent of OM transformation likely due to stoichiometric constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Bartsch I, Moore TR (1985) A preliminary investigation of primary production and decomposition in four peatlands near Schefferville, Québec. Can J Bot 63:1241–1248

    Article  Google Scholar 

  • Berendse F (1998) Effects of dominant plant species on soils during succession in nutrient-poor ecosystems. Biogeochemistry 42:73–88

    Article  Google Scholar 

  • Bergman I, Svensson BH, Nilsson M (1998) Regulation of methane production in a Swedish mire by pH, temperature and substrate. Soil Biol and Biochem 31:1867–1877

    Article  Google Scholar 

  • Bourdon S, Laggoun-Défarge F, Maman O et al (2000) Organic matter sources and early diagenetic degradation in a tropical peaty marsh (Tritrivakely, Madagascar). Implications for environmental reconstruction during the Sub-Atlantic. Org Geochem 31:421–438

    Article  Google Scholar 

  • Bragazza L, Siffi C, Iacumin P et al (2007) Mass loss and nutrient release during litter decay in peatland: the role of microbial adaptability to litter chemistry. Soil Biol and Biochem 39:257–267

    Article  Google Scholar 

  • Chamie JPM, Richardson CJ (1978) Decomposition in Northern wetlands. In: Good RE, Whigham DF, Simpson RL (eds) Freshwater wetlands: ecological processes and management potential. Academic Press, New York

    Google Scholar 

  • Charman D (2002) Peatlands and environmental change. John Wiley and Sons Ltd, New York

    Google Scholar 

  • Clymo RS (1967) Control of cation concentrations, and in particular of pH, in Sphagnum dominated communities. In: Golterman HL, Clymo RS (eds) Chemical environment in aquatic habitat. North Holland, Amsterdam

    Google Scholar 

  • Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In: Smith AJE (ed) Bryophyte ecology. Chapman and Hall, New York

    Google Scholar 

  • Comont L (2006) Etude des processus de stockage de la matière organique et de régénération des tourbières dégradées après exploitation: sites du Russey (Jura français), de la chaux d’Abel (Jura suisse) et de baupte (Cotentin, France). Dissertation, Université d’Orléans

  • Comont L, Laggoun-Défarge F, Disnar J-R (2006) Evolution of organic matter indicators in response to major environmental changes: the case of a formerly cut-over peatbog (Le Russey, Jura Mountains, France). Org Geochem 37:1736–1751

    Article  Google Scholar 

  • Conrad R (1996) Soil microorganisms as controllers of atmospheric trace gases (H2, CO, CH4, OCS, N2O and NO). Microbiol Rev 60:609–640

    Google Scholar 

  • Cornelissen JHC, van Bodegom PM, Aerts R et al (2007) Global negative vegetation feedback to climate warming responses of leaf litter decomposition rate in cold biomes. Ecol Lett 10:619–627

    Article  Google Scholar 

  • Coulson JC, Butterfield J (1978) An investigation of the biotic factors determining the rates of plant decomposition on blanket bog. J Ecol 66:631–650

    Article  Google Scholar 

  • Disnar J-R, Guillet B, Keravis D et al (2003) Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Org Geochem 34:327–343

    Article  Google Scholar 

  • Disnar J-R, Jacob J, Morched-Issa M et al (2008) Assessment of peat quality by molecular and bulk geochemical analysis: application to the Holocene record of the Chautagne marsh (Haute Savoir, France). Chem Geol 254:101–112

    Article  Google Scholar 

  • Dorrepal E, Cornelissen JH, Aerts R (2007) Changing leaf litter feedbacks on plant production across contrasting sub-artic peatland species and growth forms. Oecologia 151:251–261

    Article  Google Scholar 

  • Espitalié J, Deroo G, Marquis F (1985a) La pyrolyse Rock Eval et ses applications. Rev I Fr du Pétrol 40:563–579, 755–784

  • Espitalié J, Deroo G, Marquis F (1985b) La pyrolyse Rock Eval et ses applications. Rev I Fr du Pétrol 41:73–89

    Google Scholar 

  • Fontaine S, Barot S, Barré P (2007) Stability of carbon in deep soil layers controlled by fresh carbon supply. Nature 450:277–280

    Article  Google Scholar 

  • Ford MSJ (1990) A 10 000-Yr history of acidification of natural ecosystem acidification. Ecol Monogr 67:100–107

    Google Scholar 

  • Gobat J-M, Grosvernier P, Matthey Y (1986) Les tourbières du Jura suisse. Milieux naturels, modifications humaines, caractères des tourbes, potentiel de régénération. Actes de la Société Jurassienne d’Emulation: 213–315

  • Gorham E (1991) Northern peatlands: role in the carbon cycle and probable responses to climate warming. Ecol Appl 1:182–195

    Article  Google Scholar 

  • Hadas A, Parkin TB, Stahl PD (1998) Reduced CO2 release from decomposing wheat straw under N-limiting conditions: simulation of carbon turnover. Eur J Soil Sci 49:487–494

    Article  Google Scholar 

  • Hogg P, Squires P, Fitter AH (1995) Acidification, nitrogen deposition and rapid vegetational change in a small valley mire in Yorkshire. Biol Conserv 71:143–153

    Article  Google Scholar 

  • Jacob J (2003) Enregistrement des variations paléoenvironmentales depuis 20000 and dans le Nord Est du Brésil (Lac Caço) par les triterpènes et autres marqueurs organique. Dissertation, Université d’Orléans

  • Jacob J, Disnar J-R, Boussafir M et al (2004) Major environmental changes recorded by lacustrine sedimentary organic matter since the last glacial maximum near the equator (Lagao do Caço, NE, Brazil). Palaeogeog Palaeoclim Palaeoecol 205:183–197

    Article  Google Scholar 

  • Jones CG, Lawton JH, Schachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Kaila A (1956) Determination of the degree of humification of peat samples. J Agr Sci Finl 28:18–35

    Google Scholar 

  • Knies J (2005) Climate-induced changes in sedimentary regimes for organic matter supply on the continental shelf off northern Norway. Geochim Cosmochim Ac 69:4631–4647

    Article  Google Scholar 

  • Lafargue E, Marquis F, Pillot D (1998) Rock-Eval 6 applications in hydrocarbon exploration, production and soil contamination studies. Rev I Fr Pétrol 53:421–437

    Google Scholar 

  • Laggoun-Défarge F, Mitchell E, Gilbert D et al (2008) Cut-over peatland regeneration assessment using organic matter and microbial indicators (bacteria and testate amoebae). J Appl Ecol 45:716–727

    Article  Google Scholar 

  • Manzoni A, Porporato A (2009) Soil carbon and nitrogen mineralization: theory and models across scales. Soil Biol Biochem 41:1355–1379

    Article  Google Scholar 

  • Minkkinen K, Laine J (1998a) Effect of forest drainage on the peat bulk density of pine mires in Finland. Can J Forest Res 28:178–186

    Article  Google Scholar 

  • Minkkinen K, Laine J (1998b) Long-term effect of forest drainage on the peat carbon stores of pine mires in Finland. Can J of Forest Res 28:1267–1275

    Article  Google Scholar 

  • Painter TJ (1991) Lindow man, Tollund man and other peat-bog bodies: the preservative and antimicrobial action of sphagnan, a reactive glycuronoglycan with tanning and sequestering properties. Carbohyd Polym 15:123–142

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change. Academic Press, San Diego

    Google Scholar 

  • Sebag D, Disnar J-R, Guillet B et al (2006) Monitoring organic matter dynamics in soil profiles by ‘Rock-Eval pyrolysis’: bulk characterization and quantification of degradation. Eur J Soil Sci 57:344–355

    Article  Google Scholar 

  • Statsoft Inc (2008) STATISTICA for Windows version 8.0. Statsoft, Inc, Tulsa Oklahoma

    Google Scholar 

  • Taylor K, Rowland AP, Jones HE (2001) Molinia caerulea (L.) Moench. J Ecol 86:126–144

    Article  Google Scholar 

  • Tomassen HBM, Smolders AJP, Lamers LPM et al (2003) Stimulated growth of Betula pubescens and Molinia caerulea on ombrotrophic bogs: role of high level of atmospheric nitrogen deposition. J Ecol 91:357–370

    Article  Google Scholar 

  • Tomassen HBM, Smolders AJP, Limpens J et al (2004) Expansion of invasive species on ombrotrophic bogs: desiccation or high N deposition? J Ecol 41:139–150

    Article  Google Scholar 

  • van Breemen N (1995) How Sphagnum bogs down other plants. Trends Ecol Evol 10:270–275

    Article  Google Scholar 

Download references

Acknowledgements

This paper is a contribution to the research conducted at the OSUC (Observatoire des Sciences de l’Univers en région Centre). Financial support was provided by a Conseil General du Loiret grant to S. Gogo. The authors gratefully acknowledge M. Hatton, R. Boscardin and E. Rivoire for analytical assistance and J.R. Disnar and C. Défarge for advice regarding Rock–Eval pyrolysis and spectrophometer analyses. The authors are also grateful to the reviewers for their constructive comments and helpful suggestions on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sébastien Gogo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogo, S., Laggoun-Défarge, F., Delarue, F. et al. Invasion of a Sphagnum-peatland by Betula spp and Molinia caerulea impacts organic matter biochemistry. Implications for carbon and nutrient cycling. Biogeochemistry 106, 53–69 (2011). https://doi.org/10.1007/s10533-010-9433-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-010-9433-6

Keywords

Navigation