Skip to main content

Advertisement

Log in

Organic matter sources and decay assessment in a Sphagnum-dominated peatland (Le Forbonnet, Jura Mountains, France): impact of moisture conditions

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

In a context of climate change peatlands may switch from a sink to a source of carbon (C). The induced positive feedbacks are closely linked to C dynamics, and thus to the fate of organic matter (OM) in the underlying peat. Our aims were to determine how moisture conditions in a Sphagnum-dominated peatland affect the dynamics of diagenetic sensitive OM which is thought to be the most reactive to warming effects. The approach was based on the identification of combined bulk and molecular bioindicators of OM sources and decay of peat profiles (up to 50 cm in depth) from two moisture conditions of the Le Forbonnet peatland (Jura Mountains, France). The (xylose + arabinose)/(galactose + rhamnose + mannose) ratio derived from the analysis of neutral monosaccharides was used to obtain indications on the botanical origin of the peat and tended to indicate a greater contribution of Cyperaceae in the deepest parts of the peat. Most bioindicators showed that OM decay increased with depth and was higher in the driest conditions. In these conditions, decay was shown by a loss of diagenetic sensitive oxygen-rich OM, probably leached by water table fluctuations. Decay intensity was also shown by the high ribose and lyxose contents at the peat surface, where microscopic observations also revealed relatively large quantities of fungal hyphae. The sugars could have arisen from microbial synthesis, primarily protozoan and fungal activity. These results suggest that water level changes preferentially impact biochemical changes in diagenetic sensitive OM, believed to be sensitive to drought events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AOM:

Amorphous organic matter

Ar:

Arabinose

C:

Carbon

Ga:

Galactose

HC:

Hydrocarbons

HI:

Hydrogen index

Ma:

Mannose

OI:

Oxygen index

OM:

Organic matter

PPI:

Pyrophosphate index

Rh:

Rhamnose

TOC:

Total organic carbon

Xy:

Xylose

References

  • Bailly G (2005) Suivi floristique de la tourbière vivante de Frasne. Internal report

  • Belyea LR (1996) Separating the effects of litter quality and microenvironment on decomposition rates in a patterned peatland. Oikos 77(3):529–539

    Article  Google Scholar 

  • Belyea LR, Malmer N (2004) Carbon sequestration in peatland: patterns and mechanisms of response to climate change. Global Change Biol 10:1043–1052

    Article  Google Scholar 

  • Bethge PO, Holmström C, Juhlin S (1996) Quantitative gas chromatography of mixtures of simple sugars. Svensk Papperstidning arg 69:60–63

    Google Scholar 

  • Bortoluzzi E, Epron D, Siegenthaler A et al (2006) Carbon balance of a European mountain bog at contrasting stages of regeneration. New Phytol 172(4):708–718

    Article  Google Scholar 

  • Bourdon S, Laggoun-Défarge F, Disnar JR et al (2000) Organic matter sources and early diagenetic degradation in a tropical peaty marsh (Tritrivakely, Madagascar). Implications for environmental reconstruction during the Sub-Atlantic. Org Geochem 31:421–438

    Article  Google Scholar 

  • Bridgham SD, Ping CL, Richardson JL (2001) Soils of northern peatlands: histosols and gelisols. In: Richardson JL, Vepraskas MJ et al (eds) Wetland soils: their genesis, hydrology, landscape and separation into hydric and nonhydric soils. Ann Arbor Press, Chelsea, MI, pp 343–370

    Google Scholar 

  • Bubier JL, Frolking S, Crill PM et al (1999) Net ecosystem productivity and its uncertainty in a diverse boreal peatland. J Geophys Res-Atmospheres 104(D22):683–692

    Article  Google Scholar 

  • Chague-Goff C, Fyfe WS (1996) Geochemical and petrographical characteristics of a domed bog, Nova Scotia: a modern analogue for temperate coal deposits. Org Geochem 24:141–158

    Article  Google Scholar 

  • Christensen TR, Friborg T, Sommerkorn M et al (2000) Trace gas exchange in a high-arctic valley 1. Variations in CO2 and CH4 flux between tundra vegetation types. Global Biogeochem Cycles 14(3):701–713

    Article  Google Scholar 

  • Clymo RS (1983) Peat. In: Gore AJP (ed) Ecosystems of the world, 4A. Mires: swamp, bog, fen and moor, general studies. Elsevier, Amsterdam, p 159

    Google Scholar 

  • Clymo RS, Hayward PM (1982) The ecology of Sphagnum. In: Smith AJE (ed) Bryophyte ecology. Chapman & Hall, London, New York, pp 229–289

    Google Scholar 

  • Comont L, Laggoun-Défarge F, Disnar JR (2006) Evolution of organic matter indicators in response to major environmental changes: the case of a formerly cut-over peatbog (Le Russey, Jura Mountains, France). Org Geochem 37:1736–1751

    Article  Google Scholar 

  • Coulson JC, Butterfield J (1978) An investigation of the biotic factors determining the rates of plant decomposition on blanket bog. J Ecol 66:631–650

    Article  Google Scholar 

  • Di-Giovanni C, Disnar JR, Bichet V et al (1998) Geochemical characterization of soil organic matter and variability of a post detrital organic supply (Chaillexon lake, France). Earth Surf Proc Land 23:1057–1069

    Article  Google Scholar 

  • Disnar JR, Trichet J (1984) The influence of various divalent cations (UO2 2+, Cu2+, Pb2+, Co2+, Ni2+, Zn2+, Mn2+) on thermally induced evolution of organic matter isolated from an algal mat. Org Geochem 6:865–874

    Article  Google Scholar 

  • Disnar JR, Guillet B, Keravis D et al (2003) Soil organic matter (SOM) characterization by Rock-Eval pyrolysis: scope and limitations. Org Geochem 34(3):327–343

    Article  Google Scholar 

  • Disnar JR, Jacob J, Morched-Issa M et al (2008) Assessment of peat quality by molecular and bulk geochemical analysis: application to the Holocene record of the Chautagne marsh (Haute Savoir, France). Chem Geol 254:101–112

    Article  Google Scholar 

  • Dorrepaal E, Toet S, van Logtestijn RSP et al (2009) Carbon respiration from subsurface peat accelerated by climate warming in the subarctic. Nature 460:616–619

    Article  Google Scholar 

  • Espitalié J, Deroo G, Marquis F (1985a) La pyrolyse Rock-Eval et ses applications, première partie. Revue de l’Institut Français du Pétrole 40:563–579

    Google Scholar 

  • Espitalié J, Deroo G, Marquis F (1985b) La pyrolyse Rock-Eval et ses applications, deuxième partie. Revue de l’Institut Français du Pétrole 40:755–784

    Google Scholar 

  • Francez AJ (2000) La dynamique du carbone dans les tourbières à Sphagnum, de la sphaigne à l’effet de serre. Année Biologique 39:205–270

    Google Scholar 

  • Gerdol R (1995) The growth dynamics of Sphagnum based on field-measurements in a temperate bog and on laboratory cultures. J Ecol 83(3):431–437

    Article  Google Scholar 

  • Gobat JM, Aragno M, Matthey Y (1986) The living soil: fundamentals of soil science and soil biology. Science publishers, Enfield

    Google Scholar 

  • Gore AJP (1983) Ecosystems of the world, 4A. Mires: swamp, bog, fen and moor, general studies. Elsevier, Amsterdam

    Google Scholar 

  • Gorham E (1991) Northern peatlands–role in the carbon-cycle and probable responses to climatic warming. Ecol Appl 1(2):182–195

    Article  Google Scholar 

  • Gunnarsson U (2005) Global patterns of Sphagnum productivity. J Bryol 27:269–279

    Article  Google Scholar 

  • Hamilton SE, Hedges JI (1988) The comparative geochemistries of lignins and carbohydrates in an anoxic fjord. Geochim Cosmochim Acta 52(1):129–142

    Article  Google Scholar 

  • Heikkinen JEP, Elsakov V, Martikainen PJ (2002) Carbon dioxide and methane dynamics and annual carbon balance in tundra wetland in NE Europe, Russia. Global Biogeochem Cycle 16(4):1115. doi:10.1029/2002GB001930

    Article  Google Scholar 

  • Hogg EH, Malmer N, Wallen B (1994) Microsite and regional variation in the potential decay rate of Sphagnum-magellanicum in south swedish raised bogs. Ecography 17(1):50–59

    Article  Google Scholar 

  • Houghton JT, Ding Y, Griggs DJ et al (2001) Climate change 2001: the scientific basis. Third IPCC report. Cambridge University Press, Cambridge

    Google Scholar 

  • Jia GD, Dungait JAJ, Bingham EM et al (2008) Neutral monosaccharides as biomarker proxies for bog-forming plants for application to palaeovegetation reconstruction in ombrotrophic peat deposits. Org Geochem 39(12):1790–1799

    Article  Google Scholar 

  • Johnson LC, Damman AWH (1991) Species-controlled Sphagnum decay on a south swedish raised bog. Oikos 61(2):234–242

    Article  Google Scholar 

  • Kaila A (1956) Determination of the degree of humification of peat samples. J Sci Agric Soc Finl 28:18–35

    Google Scholar 

  • Khoo KH, Suzuki R, Dell A et al (1996) Chemistry of the lyxose-containing mycobacteriophage receptors of Mycobacterium phlei Mycobacterium smegmatis. Biochemistry 35(36):11812–11819

    Article  Google Scholar 

  • Kirschbaüm MUF (1995) The temperature dependence of soil organic-matter decomposition and the effect of global warming on soil organic-C storage. Soil Biol Biochem 27(6):753–760

    Article  Google Scholar 

  • Lafargue E, Marquis F, Pillot D (1998) Rock- Eval 6 applications in hydrocarbon exploration, production and soil contamination studies. Revue de l’Institut Français du Pétrole 53:421–437

    Google Scholar 

  • Laggoun-Défarge F, Bourdon S, Chenu C (1999) Etude des transformations morphologiques précoces des tissus végétaux de tourbe. Apport du marquage histochimique en MET et du cryo-MEB haute résolution. In: Elsass F, Jaunet AM et al (eds) Structure et ultrastructure des sols et des organismes vivants. INRA, Paris, p 169

    Google Scholar 

  • Laggoun-Défarge F, Mitchell EAD, Gilbert D et al (2008) Cutover peatland regeneration assessment using organic matter and microbial indicators (bacteria and testate amoebae). J Appl Ecol 45:716–727

    Article  Google Scholar 

  • Maltby E, Immirzi CP (1993) Carbon dynamics in peatlands and other wetland soils-regional and global perspectives. Chemosphere 27:999–1023

    Article  Google Scholar 

  • Manneville O, Vergne V, Villepoux O et al (1999) Le monde des tourbières et des marais—Belgique, France, Luxembourg, Suisse. Delachaux-Niestlé, Paris, Lausanne

    Google Scholar 

  • Moers MEC, Boon JJ, Deleeuw JW et al (1989) Carbohydrates speciation and PY-MS mapping of peat samples from a sub-tropical open marsh environment. Geochim Cosmochim Acta 53(8):2011–2021

    Article  Google Scholar 

  • Moers MEC, Baas M, Deleeuw JW et al (1990) Occurrence and origin of carbohydrates in peat samples from a red mangrove environment as reflected by abundances of neutral monosaccharides. Geochim Cosmochim Acta 54(9):2463–2472

    Article  Google Scholar 

  • Moore TR, Knowles R (1990) Methane emissions from fen, bog and swamp peatlands in Quebec. Biogeochemistry 11:45–61

    Article  Google Scholar 

  • Noël H (2001) Caractérisation et calibration des flux organiques sédimentaires dérivant du bassin versant et de la production aquatique (Annecy, Le Petit Lac). Rôles respectifs de l’Homme et du Climat sur l’évolution des flux organiques au cours des 6000 dernières années. Dissertation, University of Orleans

  • Økland RH, Øland T, Rydgren K (2001) A Scandinavian perspective on ecological gradients in north-west European mires: reply to wheeler and proctor. J Ecol 89:481–486

    Article  Google Scholar 

  • Painter TJ (1991) Lindow man, tollund man and other peat-bog bodies: the preservative and antimicrobial action of Sphagnan, a reactive glycuronoglycan with tanning and sequestering properties. Carbohydr Polym 15:123–142

    Article  Google Scholar 

  • Payette S, Rochefort L (2001) Ecologie des tourbières du Québec-Labrador. Les Presses de l’Université de Laval, Saint-Nicolas

    Google Scholar 

  • Pedersen A (1975) Growth measurements of five Sphagnum species in south Norway. Nor J Bot 22:277–284

    Google Scholar 

  • Popper ZA, Fry SC (2003) Primary cell wall composition of bryophytes and charophytes. Ann Bot 91(1):1–12

    Article  Google Scholar 

  • Schnitzer M (1967) Humic fulvic acid relationships in the organic soils and humification of organic matter in these soils. Can J Soil Sci 47:245–250

    Article  Google Scholar 

  • Sebag D, Disnar JR, Guillet B et al (2006) Monitoring organic matter dynamics in soil profiles by ‘Rock-Eval pyrolysis’: bulk characterization and quantification of degradation. Eur J Soil Sci 57(3):344–355

    Article  Google Scholar 

  • Strack M, Waddington JM, Rochefort L et al (2006) Response of vegetation and net ecosystem carbon dioxide exchange at different peatland microforms following water table drawdown. J Geophys Res-Biogeosci 111:G02006. doi10.1029/2005JG000145

  • Van Breemen N (1995) How Sphagnum bogs down other plants. Trends Ecol Evol 10:270–275

    Article  Google Scholar 

  • Waddington JM, Roulet NT (1996) Atmosphere-wetland carbon exchanges: Scale dependency of CO2 and CH4 exchange on the developmental topography of a peatland. Global Biogeochem Cycles 10(2):233–245

    Article  Google Scholar 

  • Wheeler BD, Proctor MCF (2000) Ecological gradients, subdivisions and terminology of north-west European mires. J Ecol 88:187–203

    Article  Google Scholar 

  • Wicks RJ, Moran MA, Pittman LJ et al (1991) Carbohydrate signatures of aquatic macrophytes and their dissolved degradation products as determined by a sensitive high-performance ion chromatography method. Appl Environ Microbiol 57(11):3135–3143

    Google Scholar 

Download references

Acknowledgements

This article is a contribution of the PEATWARM project (Effect of moderate warming on the functioning of Sphagnum peatlands and their function as carbon sink). PEATWARM is supported by the French National Agency for Research under the “Vulnerability: Environment—Climate” Program (ANR-07-VUL-010). The authors acknowledge the Regional Scientific Council of Natural Heritage of the Franche Comté Region that gave permission to perform the experiments in the Regional Natural Reserve of Forbonnet. They gratefully acknowledge C. Défarge for advices regarding spectrophometer analyses and R. Boscardin and M. Hatton for analytical assistance. E. Rowley-Jolivet has revised the English version. Authors are also grateful to the two anonymous reviewers for their constructive comments and helpful suggestions on earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Delarue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delarue, F., Laggoun-Défarge, F., Disnar, J.R. et al. Organic matter sources and decay assessment in a Sphagnum-dominated peatland (Le Forbonnet, Jura Mountains, France): impact of moisture conditions. Biogeochemistry 106, 39–52 (2011). https://doi.org/10.1007/s10533-010-9410-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-010-9410-0

Keywords

Navigation