Skip to main content
Log in

Nitrogen biogeochemistry of a mature Scots pine forest subjected to high nitrogen loads

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Nitrogen (N) biogeochemistry of a mature Scots pine (Pinus sylvestris L.) stand subjected to an average total atmospheric N deposition of 48 kg ha−1 year−1 was studied during the period 1992–2007. The annual amount of dissolved inorganic nitrogen (DIN) in throughfall (TF) averaged 34 kg ha−1 year−1 over the 16-year monitoring period. The throughfall fluxes contained also considerable amounts of dissolved organic nitrogen (DON) (5–8.5 kg N ha−1 year−1), which should be incorporated in the estimate of N flux using throughfall collectors. Throughfall DIN fluxes declined at a rate of −0.9 kg N ha−1 year−1, mainly due to the decreasing TF fluxes of ammonium (NH4), which accounted for 70% to TF DIN. The decrease in TF DIN was accompanied by a decrease in DIN leaching in the seepage water (−1.6 kg N ha−1 year−1), which occurred exclusively as nitrate (NO3 ). Nitrate losses in the leachate of the forest floor (LFH) equalled the TF NO3 delivered to the LFH-layer. On the contrary, about half of the TF NH4 + was retained within the LFH-layer. Approximately 60% of the TF DIN fluxes were leached indicating that N inputs were far in excess of the N requirements of the forest. For DON, losses were only substantial from the LFH-layer, but no DON was leached in the seepage water. Despite the high N losses through nitrate leaching and NO x emission, the forest was still accumulating N, especially in the aggrading LFH-layer. The forest stand, on the contrary, was found to be a poor N sink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aber JD, Nadelhoffer KJ, Steudler P, Melillo JM (1989) Nitrogen saturation in northern forest ecosystems. Bioscience 39:379–386. doi:10.2307/1311067

    Article  Google Scholar 

  • Aber JD, Magill A, McNulty SG, Boone RD, Nadelhoffer KJ, Downs M, Hallett R (1995) Forest biogeochemistry and primary production altered by nitrogen saturation. Water Air Soil Pollut 85:1665–1670. doi:10.1007/BF00477219

    Article  Google Scholar 

  • Aber JD, McDowell W, Nadelhoffer K, Magill A, Berntson G, Kamakea M, McNulty S, Currie W, Rustad L, Fernandez I (1998) Nitrogen saturation in temperate forest ecosystems—hypotheses revisited. Bioscience 48:921–934. doi:10.2307/1313296

    Article  Google Scholar 

  • Beier C, Rasmussen L, Pilegaard K, Ambus P, Mikkelsen T, Jensen NO, Kjoller A, Priemé A, Ladekarl UL (2001) Fluxes of NO3 , NH4 +, NO, NO2, and N2O in an old Danish beech forest. Water Air Soil Pollut Focus 1:187–195. doi:10.1023/A:1011538729122

    Article  Google Scholar 

  • Berg B (2004) Sequestration rates for C and N in soil organic matter. In: Matzner E (ed) Biogeochemistry of forested catchments in a changing environment. Ecological studies, vol 172. Springer-Verlag, Berlin Heidelberg, pp 361–376

    Google Scholar 

  • Berg B, Mcclaugherty C, Desanto AV, Johansson MB, Ekbohm G (1995) Decomposition of litter and soil organic-matter—can we distinguish a mechanism for soil organic-matter buildup. Scand J For Res 10(2):108–119

    Article  Google Scholar 

  • Borken W, Matzner E (2004) Nitrate leaching in forest soils: an analysis of long-term monitoring sites in Germany. J Plant Nutr Soil Sci 167:277–283. doi:10.1002/jpln.200421354

    Article  Google Scholar 

  • Carlisle A, Brown AH, White EJ (1966) The organic matter and nutrient elements in the precipitation beneath a sessile oak (Quercus petraea) canopy. J Ecol 54:87–98. doi:10.2307/2257660

    Article  Google Scholar 

  • Curiel Yuste J, Konôpka B, Janssens IA, Coenen K, Xiao CW, Ceulemans R (2005) Contrasting net primary productivity and carbon distribution between neighbouring stands of Quercus robur and Pinus sylvestris. Tree Physiol 25:701–712

    Google Scholar 

  • de Vries W, Solberg S, Dobbertin M, Sterba H, Laubhahn D, Reinds GJ, Nabuurs GJ, Gundersen P, Sutton MA (2008) Ecologically implausible carbon response. Nature 451:E1–E2. doi:10.1038/nature06579

    Article  Google Scholar 

  • Dise NB, Wright RF (1995) Nitrogen leaching from European forests in relation to nitrogen deposition. For Ecol Manage 71:153–161

    Article  Google Scholar 

  • Dise NB, Matzner E, Forsius M (1998) Evaluation of organic horizon C:N ratio as an indicator of nitrate leaching in conifer forests across Europe. For Ecol Manage 102:453–456

    Google Scholar 

  • Draaijers GPJ, Erisman JW (1995) A canopy budget model to assess atmospheric deposition from throughfall measurements. Water Air Soil Pollut 85:2253–2258. doi:10.1007/BF01186169

    Article  Google Scholar 

  • Duyzer JH, Dorsey JR, Gallagher MW, Pilegaard K, Walton S (2004) Oxidized nitrogen and ozone interaction with forests. II: multi-layer process-oriented modelling results and a sensitive study for Douglas fir. Q J R Meteorol Soc 130:1957–1971. doi:10.1256/qj.03.125

    Article  Google Scholar 

  • Dyer AJ, Hicks BB (1970) Flux-gradient relationships in the constant flux layer. Q J R Meteorol Soc 96:715–721. doi:10.1002/qj.49709641012

    Article  Google Scholar 

  • Emmet BA, Boxman D, Bredemeier M, Gundersen P, Kjonaas OJ, Moldan F, Schleppi P, Tietema A, Wright RF (1998) Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the NITREX ecosystem-scale experiments. Ecosystems (N Y, Print) 1:352–360. doi:10.1007/s100219900029

    Article  Google Scholar 

  • Evans CD, Reynolds B, Jenkins A, Helliwell RC, Curtis CJ, Goodale CL, Ferrier RC, Emmett BA, Pilkington MG, Caporn SJM, Carroll JA, Norris D, Davies J, Coull MC (2006) Evidence that soil carbon pool determines susceptibility of semi-natural ecosystems to elevated nitrogen leaching. Ecosystems (N Y, Print) 9:453–462. doi:10.1007/s10021-006-0051-z

    Article  Google Scholar 

  • Feng Z, Brumme R, Xu XJ, Lamersdorf N (2008) Tracing the fate of mineral N compounds under high ambient N deposition in a Norway spruce forest at Solling/Germany. For Ecol Manage 255:2061–2073

    Article  Google Scholar 

  • Fenn ME, Poth MA, Johnson DW (1996) Evidence for nitrogen saturation in the San Bernardino Mountains in southern California. For Ecol Manage 82:211–230

    Article  Google Scholar 

  • Fenn ME, Poth MA, Aber JD, Baron JS, Bormann BT, Johnson DW, Lemly AD, McNulty SG, Ryan DF, Stottlemyer R (1998) Nitrogen excess in North American ecosystems: predisposing factors, ecosystem responses, and management strategies. Ecol Appl 8:706–733. doi:10.1890/1051-0761(1998)008[0706:NEINAE]2.0.CO;2

    Article  Google Scholar 

  • Fenn ME, Poth MA, Terry JD, Blubaugh TJ (2005) Nitrogen mineralization and nitrification in a mixed-conifer forest in southern California: controlling factors, fluxes, and nitrogen fertilization response at a high and low nitrogen deposition site. Can J For Res 35:1464–1486. doi:10.1139/x05-068

    Article  Google Scholar 

  • Gaige E, Dail D, Hollinger D, Davidson E, Fernandez I, Sievering H, White A, Halteman W (2007) Changes in canopy processes following whole-forest canopy nitrogen fertilization of a mature spruce-hemlock forest. Ecosystems (N Y, Print) 10:1133–1147. doi:10.1007/s10021-007-9081-4

    Article  Google Scholar 

  • Goodale CL, Aber JD, Vitousek PM, McDowell WH (2005) Long-term decreases in stream nitrate: successional causes unlikely; possible links to DOC? Ecosystems (N Y, Print) 8:334–337. doi:10.1007/s10021-003-0162-8

    Article  Google Scholar 

  • Gundersen P (1998) Effects of enhanced nitrogen deposition in a spruce forest at Klosterhede, Denmark, examined by moderate NH4NO3 addition. For Ecol Manage 101:251–268

    Article  Google Scholar 

  • Gundersen P, Callessen I, de Vries W (1998) Nitrate leaching in forest ecosystems is controlled by forest floor C:N-ratio. Environ Pollut 102:403–407. doi:10.1016/S0269-7491(98)80060-2

    Article  Google Scholar 

  • Gundersen P, Schmidt IK, Raulund-Rasmussen K (2006) Leaching of nitrate from temperate forests—effects of air pollution and forest management. Environ Rev 14(1):1–57. doi:10.1139/a05-015

    Article  Google Scholar 

  • IUSS Working Group WRB (2006) World reference base for soil resources, 2nd edn. World soil resources reports no. 103. FAO, Rome

  • Janssens IA, Sampson DA, Cermak J, Meiresonne L, Riguzzi F, Overloop S, Ceulemans R (1999) Above- and belowground phytomass and carbon storage in a Belgian Scots pine stand. Ann For Sci 56:81–90. doi:10.1051/forest:19990201

    Article  Google Scholar 

  • Janssens IA, Sampson DA, Curiel Yuste J, Carrara A, Ceulemans R (2002) The carbon cost of fine root turnover in a Scots pine forest. For Ecol Manage 168:231–240

    Article  Google Scholar 

  • Johnson DW, Cheng W, Burke IC (2000) Biotic and abiotic nitrogen retention in a variety of forest soils. Soil Sci Soc Am J 64:1503–1514

    Google Scholar 

  • KjØnaas JO, Stuanes AO, Huse M (1998) Effects of weekly nitrogen additions on N cycling in a coniferous forest catchment, Gårdsjön, Sweden. For Ecol Manage 101:227–249

    Article  Google Scholar 

  • Kroeze C, Aerts R, van Breemen N, van Dam D, van der Hoek K, Hofschreuder P, Hoosbeek M, de Klein J, Kros H, van Oene H, Oenema O, Tietema A, van der Veeren R, De Vries W (2003) Uncertainties in the fate of nitrogen I: an overview of sources of uncertainty illustrated with a Dutch case study. Nutr Cycl Agroecosyst 66:43–69. doi:10.1023/A:1023339106213

    Article  Google Scholar 

  • Magill AH, Aber JD (1998) Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems. Plant Soil 203:301–311. doi:10.1023/A:1004367000041

    Article  Google Scholar 

  • Magill AH, Aber JD, Hendricks JJ, Bowden RD, Melillo JM, Steudler PA (1997) Biogeochemical response of forest ecosystems to simulated chronic nitrogen deposition. Ecol Appl 7(2):402–415. doi:10.1890/1051-0761(1997)007[0402:BROFET]2.0.CO;2

    Article  Google Scholar 

  • Magnani F, Mencuccini M, Borghetti M, Berbigier P, Berninger F, Delzon S, Grelle A, Hari P, Jarvis PG, Kolari P, Kowalski AS, Lankreijer H, Law BE, Lindroth A, Loustau D, Manca G, Moncrieff JB, Rayment M, Tedeschi V, Valentini R, Grace J (2007) The human footprint in the carbon cycle of temperate and boreal forests. Nature 447:848–850. doi:10.1038/nature05847

    Article  Google Scholar 

  • McNulty SG, Aber TM, Mclellan TM, Katt SM (1990) Nitrogen cycling in high elevation forests of the north-eastern US in relation to nitrogen deposition. Ambio 19:38–40

    Google Scholar 

  • Meiwes KJ, Mindrup M, Khanna PK (2002) Retention of Ca and Mg in the forest floor of a spruce stand after application of various liming materials. For Ecol Manage 159:27–36

    Article  Google Scholar 

  • Melillo JM, Aber JD, Muratore JF (1982) Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology 63:621–626. doi:10.2307/1936780

    Article  Google Scholar 

  • Michalzik B, Kalbitz K, Park JH, Solinger S, Matzner E (2001) Fluxes and concentrations of dissolved organic carbon and nitrogen—a synthesis for temperate forests. Biogeochemistry 52(2):173–205. doi:10.1023/A:1006441620810

    Article  Google Scholar 

  • Micks P, Downs MR, Magill AH, Nadelhoffer KJ, Aber JD (2004) Decomposing litter as a sink for N-15-enriched additions to an oak forest and a red pine plantation. For Ecol Manage 196:71–87

    Article  Google Scholar 

  • Nadelhoffer K, Downs M, Fry B, Magill A, Aber J (1999) Controls on N retention and exports in a forested watershed. Environ Monit Assess 55:187–210. doi:10.1023/A:1006190222768

    Article  Google Scholar 

  • Nadelhoffer KJ, Colman BP, Currie WS, Magill A (2004) Decadal-scale fates of N-15 tracers added to oak and pine stands under ambient and elevated N inputs at the Harvard forest (USA). For Ecol Manage 196:89–107

    Article  Google Scholar 

  • Neirynck J, Ceulemans R (2008) Bidirectional ammonia exchange above a mixed coniferous forest. Environ Pollut 154:424–438. doi:10.1016/j.envpol.2007.11.030

    Article  Google Scholar 

  • Neirynck J, Van Ranst E, Roskams P, Lust N (2002) Impact of declining throughfall depositions on soil solution chemistry at coniferous forests in northern Belgium. For Ecol Manage 160:127–142

    Article  Google Scholar 

  • Neirynck J, Genouw G, Coenen S, Roskams P (2004) Deposition and air quality in Flemish forests. Communications IBW. Geraardsbergen, 71 pp (in Dutch)

  • Neirynck J, Kowalski AS, Carrara A, Genouw G, Berghmans P, Ceulemans R (2007) Fluxes of oxidised and reduced nitrogen above a mixed coniferous forest exposed to various nitrogen emission sources. Environ Pollut 149:31–43. doi:10.1016/j.envpol.2006.12.029

    Article  Google Scholar 

  • Norby RJ (1998) Nitrogen deposition: a component of global change analyses. New Phytol 139:189–200. doi:10.1046/j.1469-8137.1998.00183.x

    Article  Google Scholar 

  • Nugroho RA, Roling WFM, Laverman AM, Verhoef HA (2007) Low nitrification rates in acid Scots pine forest soils are due to pH-related factors. Microb Ecol 53:89–97. doi:10.1007/s00248-006-9142-9

    Article  Google Scholar 

  • Pilegaard K, Skiba U, Ambus P, Beier C, Brüggemann N, Butterbach-Bahl K, Dick J, Dorsey J, Duyzer J, Gallagher M, Gasche R, Horvath L, Kitzler B, Leip A, Pihlatie MK, Rosenkranz P, Seufert G, Vesala T, Westrate H, Zechmeister-Boltenstern S (2006) Factors controlling regional differences in forest soil emission of nitrogen oxides (NO and N2O). Biogeosciences 3:651–661

    Article  Google Scholar 

  • Pregitzer KS, Burton AJ, Zak DR, Talhelm AF (2008) Simulated chronic nitrogen deposition increases carbon storage in northern temperate forests. Glob Chang Biol 14:142–153

    Google Scholar 

  • Prietzel J, Stetter U, Klemmt HJ, Rehfuess KE (2006) Recent carbon and nitrogen accumulation and acidification in soils of two Scots pine ecosystems in southern Germany. Plant Soil 289:153–170. doi:10.1007/s11104-006-9120-5

    Article  Google Scholar 

  • Rowe EC, Evans CD, Emmett BA, Reynolds B, Helliwell RC, Coull MC, Curtis CJ (2006) Vegetation type affects the relationship between soil carbon to nitrogen ratio and nitrogen leaching. Water Air Soil Pollut 177:335–347. doi:10.1007/s11270-006-9177-z

    Article  Google Scholar 

  • Rueth HM, Baron JS (2002) Differences in Engelmann spruce forest biogeochemistry east and west of the Continental Divide in Colorado USA. Ecosystems (N Y, Print) 5:45–57. doi:10.1007/s10021-001-0054-8

    Article  Google Scholar 

  • Stadler B, Solinger S, Michalzik B (2001) Insect herbivores and the nutrient flow from the canopy to the soil in coniferous and deciduous forests. Oecologia 126:104–113. doi:10.1007/s004420000514

    Article  Google Scholar 

  • Stoddard JL (1994) Long-term changes in watershed retention of nitrogen—its causes and aquatic consequences. In: Baker LA (ed) Environmental chemistry of lakes and reservoirs, No. 237. American Chemical Society, Washington, DC, pp 223–248

    Google Scholar 

  • Sulkava M, Luyssaert S, Rautio P, Janssens IA, Hollmen J (2007) Modeling the effects of varying data quality on trend detection in environmental modelling. Ecol Inf 2:167–176

    Article  Google Scholar 

  • Tietema A, Riemer L, Verstraten JM, van der Maas MP, van Wijk QJ, van Voorthuyzen I (1992) Nitrogen cycling in acid forest soils subject to increased atmospheric nitrogen input. For Ecol Manage 57:29–44

    Article  Google Scholar 

  • Tietema A, Emmett BA, Gundersen P, KjØnaas OJ, Koopmans CJ (1998) The fate of 15N-labelled nitrogen deposition in coniferous forest ecosystems. For Ecol Manage 101:19–27

    Article  Google Scholar 

  • Ulrich B (1983) Interactions of forest canopies with atmospheric constituents: SO2, alkali and earth alkali cations and chloride. In: Ulrich B, Pankrath J (eds) Effects of accumulation of air pollutants in forest ecosystems. Reidel, Dordrecht, pp 33–45

    Google Scholar 

  • Vande Walle I, Lemeur R (eds) (2001) Biogeochemical cycles of belgian forest ecosystems related to global change and sustainable development: final report. Federal Office for Scientific, Technical and Cultural Affairs. Brussels, Belgium, 277 pp

  • Van Den Berge K, Maddelein D, De Vos B, Roskams P (1992) Analysis of air pollution and its consequences on forest ecosystems. Report no. 19 AMINAL, Ministry of the Flemish Community, 169 pp (in Dutch)

  • Venterea RT, Groffman PM, Verchot LV, Magill AH, Aber JD (2004) Gross nitrogen process rates in temperate forest soils exhibiting symptoms of nitrogen saturation. For Ecol Manage 196:129–142

    Article  Google Scholar 

  • Waldrop P, Zak DR (2006) Response of oxidative enzyme activities to nitrogen deposition affects soil concentrations dissolved organic carbon. Ecosystems (N Y, Print) 9:291–933. doi:10.1007/s10021-004-0149-0

    Article  Google Scholar 

  • White CS (1994) Monoterpenes: their effects on ecosystem nutrient cycling. J Chem Ecol 20:1381–1406. doi:10.1007/BF02059813

    Article  Google Scholar 

  • Xiao CW, Yuste JC, Janssens IA, Roskams P, Nachtergale L, Carrara A, Sanchez BY, Ceulemans R (2003) Above- and belowground biomass and net primary production in a 73-year-old Scots pine forest. Tree Physiol 23:505–516

    Google Scholar 

  • Zuur AF, Ieno EN, Smith GM (2007) Analysing ecological data. Statistics for biology and health. Springer, New York

    Google Scholar 

Download references

Acknowledgments

Financial support for the purchase of the AMANDA monitor, dry denuder/filter pack measurements and for the employment of technical staff was provided by the VLINA (Flemish Impuls Program on Nature Development). This project was performed under the authority of the Flemish Minister of Environment. Sampling of throughfall, soil water and litterfall was carried out within the framework of the UN/ECE intensive monitoring of forest ecosystems (ICP-Forests). We’d like to thank S. Coenen and A. Verstraeten for the supply of level II-data. We acknowledge chief laboratory engineer G. Genouw for additional N analyses. Data from biomass analysis were collected by Linda Meiresonne and N incubation experiments were run by M. Carnol within the framework of the BELFOR program (contract CG/DD/05) financed by the Belgian Federal Office for Scientific, Technical and Cultural Affairs. IAJ and RC acknowledge support by UA-Methusalem.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Neirynck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neirynck, J., Janssens, I.A., Roskams, P. et al. Nitrogen biogeochemistry of a mature Scots pine forest subjected to high nitrogen loads. Biogeochemistry 91, 201–222 (2008). https://doi.org/10.1007/s10533-008-9280-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-008-9280-x

Keywords

Navigation