Skip to main content
Log in

Denitrification and nitrous oxide effluxes in boreal, eutrophic river sediments under increasing nitrate load: a laboratory microcosm study

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Intact sediment cores from rivers of the Bothnian Bay (Baltic Sea) were studied for denitrification based on benthic fluxes of molecular nitrogen (N2) and nitrous oxide (N2O) in a temperature controlled continuous water flow laboratory microcosm under 10, 30, 100, and 300 μM of 15N enriched nitrate (NO3 , ~98 at. %). Effluxes of both N2 and N2O from sediment to the overlying water increased with increasing NO3 load. Although the ratio of N2O to N2 increased with increasing NO3 load, it remained below 0.04, N2 always being the main product. At the NO3 concentrations most frequently found in the studied river water (10–100 μM), up to 8% of the NO3 was removed in denitrification, whereas with the highest concentration (300 μM), the removal by denitrification was less than 2%. However, overall up to 42% of the NO3 was removed by mechanisms other than denitrification. As the microbial activity was simultaneously enhanced by the NO3 load, shown as increased oxygen consumption and dissolved inorganic carbom efflux, it is likely that a majority of the NO3 was assimilated by microbes during their growth. The 15N content in ammonium (NH4 +) in the efflux was low, suggesting that reduction of NO3 to NH4 + was not the reason for the NO3 removal. This study provides the first published information on denitrification and N2O fluxes and their regulation by NO3 load in eutrophic high latitude rivers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • An S, Gardner WS (2002) Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Mar Ecol Prog Ser 237:41–50. doi:10.3354/meps237041

    Article  Google Scholar 

  • Anderssen JM (1977) Rates of denitrification of undisturbed sediment from six lakes as a function of nitrate concentration, oxygen and temperature. Arch Hydrobiol 2:147–159

    Google Scholar 

  • Bange HW, Rapsomanikis S, Andreae MO (1996) Nitrous oxide in coastal waters. Global Biogeochem Cycles 10:197–207. doi:10.1029/95GB03834

    Article  Google Scholar 

  • Blackmer AM, Bremner JM (1978) Inhibitory effect of nitrate on reduction of N2O to N2 by soil microorganisms. Soil Biol Biochem 10:187–191. doi:10.1016/0038-0717(78)90095-0

    Article  Google Scholar 

  • Bonin P (1996) Anaerobic nitrate reduction to ammonium in two strains isolated from coastal marine sediment: a dissimilatory pathway. FEMS Microbiol Ecol 19:27–38. doi:10.1111/j.1574-6941.1996.tb00195.x

    Article  Google Scholar 

  • Bonin P, Ornnes P, Chalamet A (1998) Simultaneous occurrence of denitrification and nitrate ammonification in sediments of the French Mediterranean coast. Hydrobiologia 389:169–182

    Article  Google Scholar 

  • Brunet RC, Garcia-Gil LJ (1996) Sulfide-induced dissimilatory nitrate reduction to ammonia in anaerobic freshwater sediments. FEMS Microbiol Ecol 21:131–138. doi:10.1111/j.1574-6941.1996.tb00340.x

    Article  Google Scholar 

  • Christensen PB, Sørensen J (1986) Temporal variation of denitrification activity in plant-covered, littoral sediment from lake Hampen, Denmark. Appl Environ Microbiol 51:1174–1179

    Google Scholar 

  • de Bie MJM, Middelburg JJ, Starink M et al (2002) Factors controlling nitrous oxide at the microbial community and estuarine scale. Mar Ecol Prog Ser 240:1–9. doi:10.3354/meps240001

    Article  Google Scholar 

  • Elkins JW, Wofsy SC, McElroy MB et al (1978) Aquatic sources and sinks for nitrous oxide. Nature 275:602–606. doi:10.1038/275602a0

    Article  Google Scholar 

  • García-Ruiz R, Pattinson SN, Whitton BA (1998a) Denitrification in river sediments: relationship between process rate and properties of water and sediment. Freshw Biol 39:467–476. doi:10.1046/j.1365-2427.1998.00295.x

    Article  Google Scholar 

  • García-Ruiz R, Pattinson SN, Whitton BA (1998b) Kinetic parameters of denitrification in a river continuum. Appl Environ Microbiol 64:2533–2538

    Google Scholar 

  • García-Ruiz R, Pattinson SN, Whitton BA (1999) Nitrous oxide production in the river Swale-Ouse, North-East England. Water Res 33:1231–1237. doi:10.1016/S0043-1354(98)00324-8

    Article  Google Scholar 

  • Goyens L, de Vries RIP, Bakker JF, Helder W (1987) An experiment on the relative importance of denitrification, nitrate reduction and ammonification in coastal marine sediment. Neth J Sea Res 21:171–175

    Article  Google Scholar 

  • Gran V, Pitkänen H (1999) Denitrification in estuarine sediments in the eastern Gulf of Finland, Baltic Sea. Hydrobiologia 393:107–115. doi:10.1023/A:1003530907516

    Article  Google Scholar 

  • Hauck RD, Melsted SW, Yanlwitch PE (1958) Use of N-isotope distribution in nitrogen gas in the study of denitrification. Soil Sci 86:287–291. doi:10.1097/00010694-195811000-00011

    Article  Google Scholar 

  • Hietanen S (2007) Anaerobic ammonium oxidation in sediments of the Gulf of Finland. Aquat Microb Ecol 48:197–205

    Article  Google Scholar 

  • Hulth S, Aller RC, Canfield DE et al (2005) Nitrogen removal in marine environments: recent findings and future research challenges. Mar Chem 94:125–145. doi:10.1016/j.marchem.2004.07.013

    Article  Google Scholar 

  • Jenkins MC, Kemp WM (1985) The coupling of nitrification and denitrification in two estuarine sediments. Limnol Oceanogr 29:609–619

    Google Scholar 

  • Jørgensen KS (1989) Annual pattern of denitrification and nitrate ammonification in estuarine sediment. Appl Environ Microbiol 55:1841–1847

    Google Scholar 

  • Jørgensen KS, Sørensen J (1988) Two annual maxima of nitrate reduction and denitrification in estuarine sediment (Norsminde Fjord, Denmark). Mar Ecol Prog Ser 48:147–154. doi:10.3354/meps048147

    Article  Google Scholar 

  • Kana TD, Sullivan MB, Cornwell JC et al (1998) Denitrification in estuarine sediments determined by membrane inlet mass spectrometry. Limnol Oceanogr 43:334–339

    Google Scholar 

  • Kaspar HF (1983) Denitrification, nitrate reduction to ammonium, and inorganic nitrogen pools in intertidal sediments. Mar Biol 74:133–139

    Article  Google Scholar 

  • Kaspar HF, Asher RA, Boyer IC (1985) Microbial nitrogen transformations in sediments and inorganic nitrogen fluxes across the-sediment/water interface on the South Island West Coast, New Zealand. Estuar Coast Shelf Sci 21:245–255

    Article  Google Scholar 

  • Koch MS, Maltby E, Oliver GA et al (1992) Factors controlling denitrification rates of tidal mudflats and fringing salt marshes in South-West England. Estuar Coast Shelf Sci 34:471–485. doi:10.1016/S0272-7714(05)80118-0

    Article  Google Scholar 

  • Kroeze C, Seitzinger SP (1998) Nitrogen inputs to rivers, estuaries and continental shelves and related nitrous oxide emissions in 1990 and 2050: a global model. Nutr Cycl Agroecosyst 52:195–212. doi:10.1023/A:1009780608708

    Article  Google Scholar 

  • Kronholm M, Albertson J, Laine A (eds) (2005) Perämeri Life. Perämeren toimintasuunnitelma. Länstyrelsen i Norrbottens län, raportserie 1/2005

  • Kuypers MM, Sliekers AO, Lavik K et al (2003) Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 442:608–611. doi:10.1038/nature01472

    Article  Google Scholar 

  • Laursen AE, Seitzinger SP (2004) Diurnal patterns of denitrification, oxygen consumption and nitrous oxide production in rivers measured at the whole-reach scale. Freshw Biol 49:1448–1458. doi:10.1111/j.1365-2427.2004.01280.x

    Article  Google Scholar 

  • Law CS, Owens NJP (1990) Denitrification and nitrous oxide in the North Sea. Neth J Sea Res 25:65–74. doi:10.1016/0077-7579(90)90009-6

    Article  Google Scholar 

  • Liikanen A, Flöjt L, Martikainen PJ (2002a) Gas dynamics in eutrophic lake sediments affected by oxygen, nitrate and sulphate. J Environ Qual 31:338–349

    Google Scholar 

  • Liikanen A, Tanskanen H, Murtoniemi T et al (2002b) A laboratory microcosm for simultaneous gas and nutrient flux measurements in sediments. Boreal Environ Res 7:151–160

    Google Scholar 

  • Matheson FE, Nguyen ML, Cooper AB et al (2002) Fate of 15 N- nitrate in unplanted, planted and harvested wetland soil microcosms. Ecol Eng 19:249–264. doi:10.1016/S0925-8574(02)00093-9

    Article  Google Scholar 

  • McAuliffe C (1971) GC determination of solutes by multiple phase equilibration. Chemtech 1:46–51

    Google Scholar 

  • McClain ME, Boyer EW, Dent CL et al (2003) Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems (NY, print) 6:301–312. doi:10.1007/s10021-003-0161-9

    Article  Google Scholar 

  • Middelburg JJ, Soetaert K, Herman PMJ (1996) Evaluation of the nitrogen isotope pairing technique for measuring benthic denitrification: a simulation analysis. Limnol Oceanogr 41:1833–1839

    Google Scholar 

  • Nielsen K, Nielsen LP, Rasmussen P (1995) Estuarine nitrogen retention independently estimated by the denitrification rate and mass-balance method: a study of Norsminde Fjord, Denmark. Mar Ecol Prog Ser 219:25–40. doi:10.3354/meps219025

    Article  Google Scholar 

  • Nykänen H, Alm J, Lång K et al (1995) Emissions of CH4, N2O and CO2 from a virgin fen and a fen drained for grassland in Finland. J Biogeogr 22:351–357. doi:10.2307/2845930

    Article  Google Scholar 

  • Ogilvie B, Nedwell DB, Harrison RM et al (1997) High nitrate, muddy estuaries as nitrogen sinks: the nitrogen budget of the River Colne estuary (United Kingdom). Mar Ecol Prog Ser 150:217–228. doi:10.3354/meps150217

    Article  Google Scholar 

  • Oremland RS, Umberger C, Culbertson CW et al (1984) Denitrification in San Francisco bay intertidal sediments. Appl Environ Microbiol 47:1106–1112

    Google Scholar 

  • Oren A, Blackburn TH (1979) Estimation of sediment denitrification rates in situ nitrate concentrations. Appl Environ Microbiol 37:174–176

    Google Scholar 

  • Pfenning KS, McMahon PB (1996) Effect of nitrate, organic carbon and temperature on potential denitrification rates in nitrate-rich riverbeds. J Hydrol 187:283–295

    Article  Google Scholar 

  • Piña-Ochoa E, Álvares-Cobelas M (2006) Denitrification in aquatic environments: a cross-system analysis. Biogeochemistry 81:111–130. doi:10.1007/s10533-006-9033-7

    Article  Google Scholar 

  • Pind A, Risgaard-Petersen N, Revsbech NP (1997) Denitrification and microphytobenthic NO3 consumption in a Danish lowland stream: diurnal and seasonal variation. Aquat Microb Ecol 12:275–284. doi:10.3354/ame012275

    Article  Google Scholar 

  • Risgaard-Petersen N, Nielsen LP, Rysgaard S et al (2003) Application of the isotope pairing technique in sediments where anammox and denitrification co-exist. Limnol Oceanogr Methods 1:63–73

    Google Scholar 

  • Royer TV, Tank JL, David MB (2004) Transport and fate of nitrate in headwater agricultural streams in Illinois. J Environ Qual 33:1296–1304

    Article  Google Scholar 

  • Russow R (1999) Determination of 15N in 15N-enriched nitrite and nitrate in aqueous samples by reaction continuous-flow quadrupole mass spectrometry. Rapid Commun Mass Spectrom 13:1334–1338. doi:10.1002/(SICI)1097-0231(19990715)13:13<1334::AID-RCM606>3.0.CO;2-C

    Article  Google Scholar 

  • Russow R, Förstel H (1993) Use of GC-QMS for stable isotope analysis of environmentally relevant main and trace gases in the air. Isot Environ Health Stud 29:327–334. doi:10.1080/00211919308046700

    Article  Google Scholar 

  • Rysgaard S, Risgaard-Petersen N, Nielsen LP et al (1993) Nitrification and denitrification in lake and estuarine sediments measured by the N-15 dilution technique and isotope pairing. Appl Environ Microbiol 59:2093–2098

    Google Scholar 

  • Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnol Oceanogr 33:702–724

    Article  Google Scholar 

  • Seitzinger SP, Kroeze C (1998) Global distribution of nitrous oxide production and N inputs in freshwater and coastal marine ecosystems. Global Biogeochem Cycles 12:93–113

    Article  Google Scholar 

  • SFS standardization (1976) SFS-3032. Determination of ammonium-nitrogen of water

  • Siegel RL, Hauck RD, Kurtz LT (1982) Determination of 30N2 and application to measurement of N2 evolution during denitrification. Soil Sci Soc 46:68–74

    Google Scholar 

  • Spott O, Stange CF (2007) A new mathematical approach for calculating the contribution of anammox, denitrification, and atmosphere to an N2 mixture based on a 15N tracer technique. Rapid Commun Mass Spectr 21:2398–2406

    Article  Google Scholar 

  • Stange CF, Spott O, Apelt B et al (2007) Automated and rapid online determination of 15 N abundance and concentration of ammonium, nitrite or nitrate in aqueous samples by the SPINMAS technique. Isot Environ Health Stud 43:227–236

    Article  Google Scholar 

  • Stockenberg A, Johnstone RW (1997) Benthic denitrification in the Gulf of Bothnia. Estuar Coast Shelf Sci 45:835–843

    Article  Google Scholar 

  • Thamdrup B, Dalsgaard T (2002) Production of N2 through anaerobic ammonium oxidation coupled to nitrate reduction in marine sediments. Appl Environ Microb 68:1312–1318

    Article  Google Scholar 

  • Trimmer M, Nedwell DB, Sivyer DB et al (1998) Nitrogen fluxes through the lower estuary of the river Great Ouse, England: the role of the bottom sediments. Mar Ecol–Prog Ser 163:109–124

    Article  Google Scholar 

  • Trimmer M, Risgaard-Petersen N, Nicholls JC et al (2006) Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores. Mar Ecol–Prog Ser 326:37–47

    Article  Google Scholar 

  • Tuominen L, Heinänen A, Kuparinen J et al (1998) Spatial and temporal variability of denitrification in the sediments of the northern Baltic proper. Mar Ecol–Prog Ser 172:13–24

    Article  Google Scholar 

  • Weier KL, Doran JW, Power JF et al (1993) Denitrification and the Dinitrogen/Nitrous Oxide ratio as affected by soil water, available carbon, and nitrate. Soil Sci Soc Am J 57:66–72

    Google Scholar 

Download references

Acknowledgments

We thank Jaana Rintala (North Ostrobothnia Regional Environmental Centre) for providing maps. Bernd Apelt is acknowledged for his assistance with the laboratory work and Antti Ollila for providing equipment for the sediment sampling. We are grateful to the anonymous referees for their valuable comments. This study was funded by the Academy of Finland (decision number 202429) and H. S. got funding from the Graduate School of Environmental Science and Technology (EnSTe) and the Ella and Georg Ehrnrooth Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hanna Silvennoinen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silvennoinen, H., Liikanen, A., Torssonen, J. et al. Denitrification and nitrous oxide effluxes in boreal, eutrophic river sediments under increasing nitrate load: a laboratory microcosm study. Biogeochemistry 91, 105–116 (2008). https://doi.org/10.1007/s10533-008-9262-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-008-9262-z

Keywords

Navigation