Skip to main content

Advertisement

Log in

Modelling soil C sequestration in spruce forest ecosystems along a Swedish transect based on current conditions

  • Original Paper
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The change of current pools of soil C in Norway spruce ecosystems in Sweden were studied using a process-based model (CoupModel). Simulations were conducted for four sites representing different regions covering most of the forested area in Sweden and representing annual mean temperatures from 0.7°C to 7.1°C. The development of both tree layer and field layer (understory) was simulated during a 100-year period using data on standing stock volumes from the Swedish Forest Inventory to calibrate tree growth using different assumptions regarding N supply to the plants. The model successfully described the general patterns of forest stand dynamics along the Swedish climatic transect, with decreasing tree growth rates and increasing field layer biomass from south to north. However, the current tree growth pattern for the northern parts of Sweden could not be explained without organic N uptake and/or enhanced mineralisation rates compared to the southern parts. Depending on the assumption made regarding N supply to the tree, different soil C sequestration rates were obtained. The approach to supply trees with both mineralised N and organic N, keeping the soil C:N ratio constant during the simulation period was found to be the most realistic alternative. With this approach the soils in the northern region of Sweden lost 5 g C m−2 year−1, the soils in the central region lost 2 g C m−2 year−1, and the soils in the two southern regions sequestered 9 and 23 g C m−2 year−1, respectively. In addition to climatic effects, the feedback between C and N turnover plays an important role that needs to be more clearly understood to improve estimates of C sequestration in boreal forest ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alavi G, Jansson P-E (1995) Transpiration and soil moisture dynamics for spruce stands of different canopy densities and water availability. In: Nilsson L-O, Hüttl RF, Johansson UT, Mathy P (eds) Nutrient uptake and cycling in forest ecosystem, vol 21. Ecosystem Research Report pp 41–51. Luxembourg, ISBN 92-826-9416-X

  • Berg B, Booltink H, Breymeyer A, Ewertsson A, Gallardo A, Holm B, Johansson M-B, Koivuoja S, Meentemeyer V, Nyman P, Olofsson J, Pettersson A-S, Staaf H, Staaf I, Uba L (1991) Data on needle litter decomposition and soil climate as well as site characteristics for some coniferous forest sites 2nd edn. Section 2. Data on needle litter decomposition. Swedish University of Agricultural Sciences, Department of Ecology and Environmental Research, Report No 42

  • Berg B (2000) Litter decomposition and organic matter turnover in northern forest soils. For Ecol Manage 133:13–22

    Article  Google Scholar 

  • Berg B, Meentemeyer V (2001) Litter fall in some European coniferous forests as dependent on climate: A synthesis. Can J For Res 31:292–301

    Article  Google Scholar 

  • Bergh J, McMurtrie RE, Linder S (1998) Climatic factors controlling the productivity of Norway spruce: a model-based analysis. For Ecol Manage 110:127–139

    Article  Google Scholar 

  • Berggren Kleja D, Svensson M, Majdi H, Langvall O, Jansson P-E, Lindroth A, Weslien P, Bergkvist B, Johansson M-B (2007) Pools and fluxes of carbon in three Norway spruce ecosystems along a climatic gradient in Sweden. Manuscript (this volume)

  • Beskow G (1935) Soil freezing and frost heaving with special application to roads and railroads. SGU Serie C No 375 Årsbok 26(3) 242 pp [In Swedish]

  • Bonhomme R (2000) Beware of comparing RUE values calculated from PAR vs. solar radiation or absorbed vs. intercepted radiation. Field Crop Res 68:247–252

    Article  Google Scholar 

  • Bossel H (1996) TREEDYN3 forest simulation model. Ecol Model 90:187–227

    Article  Google Scholar 

  • Callesen I, Liski J, Raulund-Rasmussen K, Olsson MT, Tau-Strand L, Vesterdal L, Westman CJ (2003) Soil carbon stores in Nordic well-drained forest soils—relationship with climate and texture class. Global Change Biol 9:358–370

    Article  Google Scholar 

  • Charles-Edwards DA, Doley D, Rimmington GM (1986) Modelling plant growth and development. Academic Press, Australia, 235 pp

    Google Scholar 

  • Ciais PH, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer CHR, Carrara A, Chevallier F, De Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437:529–533

    Article  Google Scholar 

  • CoupModel database (2006) Available at: http://www.lwr.kth.se/Vara%20Datorprogram/CoupModel/index.htm

  • DeLuca TH, Zackrisson O, Nilsson MC, Sellstedt A (2002) Quantifying nitrogen-fixation in feather moss carpets of boreal forests. Nature 419:917–920

    Article  Google Scholar 

  • de Vries W, Reinds GJ, Gundersen P, Sterba H (2006) The impact of nitrogen deposition on carbon sequestration in European forests and forest soils. Global Change Biol 12:1151–1173

    Article  Google Scholar 

  • Dixon RK, Brown S, Houghton RA, Solomon AM, Trexler MC, Wisniewski J (1994) C pools and flux of global forest ecosystems. Science 263:185–190

    Article  Google Scholar 

  • Dodd ME, Silvertown J, Mcconway K, Potts J, Crawley M (1994) Stability in the plant communities of the Park Grass Experiment: The relationships between species richness, soil pH and biomass variability. Philos Trans Roy Soc London Ser B – Biol Sci 346:185–193

    Article  Google Scholar 

  • Eckersten H, Jansson P-E (1991) Modelling water flow, nitrogen uptake and production for wheat. Fertilizer Res 27:313–329

    Article  Google Scholar 

  • Eckersten H, Gärdenäs A, Jansson P-E (1995) Modelling seasonal nitrogen, carbon, water and heat dynamics of the Solling spruce stand. Ecol Model 83:119–129

    Article  Google Scholar 

  • Eckersten H, Beier C (1998) Comparison of N and C dynamics in two Norway spruce stands using a process oriented simulation model. Environ Pollut 102:395–401

    Article  Google Scholar 

  • Euskirchen ES, McGuire AD, Kicklighter DW, Zuang Q, Clein JS, Dargaville RJ, Dye DG, Kimball JS, McDonald KC, Melillo JM, Romanovsky VE, Smith NV (2006) Importance of recent shifts in soil thermal dynamics on growing season length, productivity, and carbon sequestration in terrestrial high-latitude ecosystems. Global Change Biol 12:731–750

    Article  Google Scholar 

  • Foster TE, Brooks JR (2005) Functional groups based on leaf physiology: are they spatially and temporally robust? Oecologia 144:337–352

    Article  Google Scholar 

  • Fleischer S (2003) CO2 Deficit in temperate forest soils receiving high atmospheric N-deposition. Ambio 32:2–5

    Article  Google Scholar 

  • Gärdenäs A, Eckersten H, Lillemägi M (2003) Modeling long-term effects of N fertilization and N deposition on the N balance of forest stands in Sweden. 30 pp. Emergo 2003:3 ISNN 1651-7210

  • Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404:858–861

    Article  Google Scholar 

  • Gustafsson D, Lewan L, Jansson P-E (2004) Modeling water and heat balance of the boreal landscape - comparison of forest and arable land in Scandinavia. J Applied Met 43(11):1750–1767

    Article  Google Scholar 

  • Helmisaari H-S, Makkonen K, Kellomäki S, Valtonen E, Mälkönen E (2002) Below- and above-ground biomass, production and nitrogen use in Scots pine stands in eastern Finland. For Ecol Manage 165:17–326

    Article  Google Scholar 

  • Högberg P, Nordgren A, Buchmann N, Taylor AFS, Ekblad A, Högberg MN, Nyberg G, Ottosson-Löfvenius M, Read DJ (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. Nature 411:789–792

    Article  Google Scholar 

  • Iivonen S, Kaakinen S, Jolkkonen A, Vapaavuori E, Linder S (2006) Influence of long-term nutrient optimization on biomass, carbon, and nitrogen acquisition and allocation in Norway spruce. Can J For Res 36(6):1563–1571

    Article  Google Scholar 

  • Ingestad T, Agren GI (1988) Nutrient uptake and allocation at steady-state nutrition. Physiol Plant 72:450–459

    Article  Google Scholar 

  • IPCC (2001) In: Houghton HJ (ed) Climate change 2001: the scientific basis. Contribution of Working group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, UK

  • IVL (2006) Luftföroreningar i skogliga provytor – Resultat till och med september 2005 Report B1682 Swedish Environmental Research Institute Stockholm Sweden 52 pp [In Swedish with English summary.] Available at: http://www.ivl.se/rapporter/pdf/B1682.pdf

  • Jansson P-E, Halldin S (1979) Model for the annual water and heat flow in a layered soil. In: Halldin S (ed) Comparison of forest and energy exchange models. Int Soc For Ecol Model, Copenhagen, pp 145–163

    Google Scholar 

  • Jansson P-E, Persson T, Kätterer T (1999a) N Processes in Arable and Forest Soils in the Nordic Countries – Field-scale modelling and experiments. TemaNord 1999:560. Nordic Council of Ministers, Copenhagen, 203 pp

    Google Scholar 

  • Jansson P-E, Cienciala E, Grelle A, Kellner E, Lindahl A, Lundblad M (1999b) Simulated evapotranspiration from the Norunda forest stand during the growing season of a dry year. Agric For Meteorol 98–99:621–628

    Article  Google Scholar 

  • Jansson P-E, Moon D (2001) A Coupled model of water, heat and mass transfer using object orientation to improve flexibility and functionality. Environ Model Software 16(1):37–46

    Article  Google Scholar 

  • Jansson P-E, Karlberg L (2004) Coupled heat and mass transfer model for soil-plant-atmosphere systems. Royal Institute of Technology, Department of Civil and Environmental Engineering., Stockholm, Sweden, 435 pp (ftp://www.lwr.kth.se/CoupModel/ CoupModel.pdf)

  • Johnsson H, Bergström L, Jansson P-E, Paustian K (1987) Simulated N dynamics and losses in a layered agricultural soil. Agric Ecosys Environ 18:333–356

    Article  Google Scholar 

  • Kane ES, Valentine DW, Schuur EAG, Dutta K (2005) Soil carbon stabilization along climate and stand productivity gradients in black spruce forests of interior Alaska. Canadian J For Res 35:2118–2129

    Article  Google Scholar 

  • Karlberg L, Gustafsson D, Jansson P-E (2006) Modelling carbon turnover in five terrestrial ecosystems in the boreal zone using multiple criteria of acceptance. Ambio 35(8):448–458

    Article  Google Scholar 

  • Kirchbaum MUF (2000) Will changes in soil organic carbon act as a positive or negative feedback on global warming? Biogeochemistry 48:21–51

    Article  Google Scholar 

  • Kolari P, Pumpanen J, Kulmala L, Ilvesniemi H, Nikinmaa E, Grönholm T, Hari P (2006) Forest floor vegetation plays an important role in photosynthetic production of boreal forests. For Ecol Manage 221:241–248

    Google Scholar 

  • Larcher W (2003) Physiological plant ecology: ecophysiology and stress physiology of functional groups, 4th edn. Springer-Verlag, Berlin, 523 pp

    Google Scholar 

  • Linder S, Troeng E (1981) The seasonal variation in stem and coarse root respiration in a 20-year old Scots pine (Pinus sylvestris L.). Mitteilungender Forstlichen Bundes-Versuchsanstalt (Wein) 142:125–139

    Google Scholar 

  • Lindroth A, Klemedtsson L, Grelle A, Weslien P, Langvall O (2007) Measurement of net ecosystem exchange, productivity and respiration in three spruce forests in Sweden shows unexpectedly large soil carbon losses. Biogeochemistry (this volume)

  • Liski J, Ilvesniemi H, Mäkelä A, Westman CJ (1999) CO2 emissions from soil in response to climatic warming are overestimated—The decomposition of old organic matter is tolerant to temperature. Ambio 28:171–174

    Google Scholar 

  • Mahli Y, Baldocchi DD, Jarvis PG (1999) The C balance of tropical, temperate and boreal forests. Plant, Cell and Environment 22:715–740

    Article  Google Scholar 

  • Majdi H, Andersson P (2005) Fine root production and turnover in a Norway spruce stand in northern Sweden: Effects of N and water manipulation. Ecosystems 8:191–199

    Article  Google Scholar 

  • Mälkönen E (1974) Annual primary production and nutrient cycle in some Scots pine stands. Commun Inst For Fenn 84:1–87

    Google Scholar 

  • Marklund LG (1988) Biomass functions for pine, spruce and birch in Sweden. Swed Univ Agri Sci Dept For Survey. Report 45, 73 pp [In Swedish with English summary.]

  • Melillo JM, McGuire AD, Kicklighter DW, Moore III B, Vorosmarty CJ, Schloss AL (1993) Global climate change and terrestrial net primary production. Nature 363:234–240

    Article  Google Scholar 

  • Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW, Schmidt SK (2006) Winter forest soil respiration controlled by climate and microbial community composition. Nature 439:711–714

    Article  Google Scholar 

  • Monteith JL (1965) Evaporation and environment. In: Fogg GE (ed) The state and movement of water in living organisms, 19th Symp Soc Exp Biol. The Company of Biologists, Cambridge, pp 205–234

    Google Scholar 

  • Monteith JL (1977) Climate and the efficiency of crop production in Britain. Phil Trans Royal Soc (London), Series B:281:277–294

    Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • Näslund M (1947) Funktioner och tabeller för kubering av stående träd. Tall, gran och björk i södra Sverige samt i hela landet. Meddelande från Statens Skogsförsöksanstalt 36:3 [In Swedish]

    Google Scholar 

  • Newman GS, Arthur MA, Muller RN (2006) Above- and below-ground net primary production in a temperate mixed deciduous forest. Ecosystems 9:317–329

    Article  Google Scholar 

  • Nilsson L-O, Östergren M, Wiklund K (2001) Hur påverkas träden ovan mark? In: Persson T, Nilsson L-O (eds) Skogabyförsöket – effekter av långvarig kväve- och svaveltillförsel till ett skogsekosystem. Naturvårdsverket, Rapport 5173, Stockholm, 51–74 [In Swedish with English summary.]

  • Olsson M, Erlandsson M, Nilsson T, Nilsson Å, Stendahl J (2007) Organic carbon in Swedish podsols and their relation to site factors. Biogeochemistry (this volume)

  • Olsson P, Linder S, Giesler R, Högberg P (2005) Fertilization of boreal forest reduces both autotrophic and heterotrophic respiration. Global Change Biol 11:1745–1753

    Article  Google Scholar 

  • Peltoniemi M, Mäkipää R, Liski J, Tamminen P (2004) Changes in soil carbon with stand age—an evaluation of a modeling method with empirical data. Global Change Biol 10:2078–2091

    Article  Google Scholar 

  • Penman HL (1953) The physical basis of irrigation control. In: Synge PM (ed) Report of the 13th Intern Hortic Congr, 1952, Roy Horticultural Soc, London, vol II, 913–924

  • Penning de Vries FWT, van Laar HH (1982) Simulation of Plant Growth and Crop Production. Simulation Monographs, Wageningen, The Netherlands, 307 pp

    Google Scholar 

  • Persson T, Nilsson L-O (2001) Skogabyförsöket – effekter av långvarig kväve- och svaveltillförsel till ett skogsekosystem. Naturvårdsverket, Rapport 5173, Stockholm. 220 pp [In Swedish with English summary]

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99

    Google Scholar 

  • Ratkowsky DA, Olley J, McMeekin TA, Ball A (1982) Relationship between temperature and growth rate of bacterial cultures. J Bacteriol 149:1–5

    Google Scholar 

  • Ryan MG, Lavigne MB, Gower ST (1997) Annual carbon cost of autotrophic respiration in boreal forest ecosystems in relation to species and climate. J Geophys Res Atmos 102(D24):28871–28883

    Article  Google Scholar 

  • Schimel JP, Bennett J (2004) Nitrogen mineralisation: challenges of a changing paradigm. Ecology 85:591–602

    Article  Google Scholar 

  • Schuur EAG, Trumbore SE (2006) Heterotrophic contribution to soil respiration from boreal black spruce forest: using isotopes to partition sources to soil carbon dioxide flux. Global Change Biol 12:165–176

    Article  Google Scholar 

  • Seyferth U (1998) Effects of soil temperature and moisture on carbon and nitrogen mineralisation in coniferous forests. Licentitate thesis, Department of Ecology and Environmental Research, Swedish University of Agricultural Sciences, Uppsala

  • Sinclair TR, Muchow RC (1999) Radiation use efficiency. Adv Agron 65:215–265

    Article  Google Scholar 

  • Skogsdata (2003) Aktuella uppgifter om de svenska skogarna från Riksskogstaxeringen. SLU, Inst för skoglig resurshushållning och geomatik 114 pp [In Swedish]

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, London, UK

    Google Scholar 

  • SNV (2005) Sweden’s National Inventory Report 2005 - Submitted under the United Nations Framework Convention on Climate Change. Report 5451, Swedish Environmental Protection Agency, Stockholm, Sweden, pp 216 Available at: http://www.naturvardsverket.se/bokhandeln

  • Swedish Forest Agency (2005) Grundbok för skogsbrukare. Skogsstyrelsens förlag, Jönköping, Sweden. p 190 [In Swedish]

    Google Scholar 

  • Tamm CO (1991) Nitrogen in terrestrial ecosystems, questions of productivity, vegetational changes, and ecosystem stability. Ecol Stud 81, Springer-Verlag, Berlin, Germany, 115 pp

    Google Scholar 

  • Tamm CO, Aronsson A, Popovic B, Flower-Ellis J (1999) Optimum nutrition and nitrogen saturation in Scots pine stands. Studia Forestalia Suecia 206:1–126

    Google Scholar 

  • Taylor AFS, Martin F, Read DJ (2000) Fungal diversity in ectomycorrhizal communities of Norway spruce (Picea abies (L.) Karst.) and beech (Fagus sylvatica L.) along northsouth transects in Europe. In: Schulze E-D (ed) Carbon and nitrogen cycling in European forest ecosystems ecological studies. Springer-Verlag, Berlin, Germany, pp 343–365

    Google Scholar 

  • Valentini R, Matteucci G, Dolman AJ, Schulze E-D, Rebmann C, Moors EJ, Granier A, Gross P, Jensen NO, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grünwald T, Aubinet M, Ceulemanns R, Kowalski AS, Vesala T, Rannik Ü, Berbigier P, Loustau D, Mundson J, Thorgeirsson H, Ibrom A, Morgenstern K, Clement R, Moncreiff J, Montagnani L, Minerbi S, Jarvis PG (2000) Respiration as the main determinant of C balance in European forests. Nature 404:861–865

    Article  Google Scholar 

  • Wallenda T, Stober C, Högbom L, Schinkel H, George E, Högberg P, Read DJ (2000) Nitrogen uptake processes in roots and mycorrhizas. Ecological Studies 142. Springer, Berlin Heidelberg New York, pp 122–143

    Google Scholar 

  • Wang YP, Polglase PJ (1995) Carbon balance in the tundra, boreal forest and humid tropical forest during climate change: Scaling up from leaf physiology and soil carbon dynamics. Plant Cell Env 18:1226–1244

    Article  Google Scholar 

  • Waring RH, Landsberg JJ, Williams M (1998) Net primary production of forests: a constant fraction of gross primary production? Tree Physiol 18:129–134

    Google Scholar 

  • Wikström F, Ericsson T (1995) Allocation of mass in trees subject to nitrogen and magnesium limitation. Tree Physiol 15:339–344

    Google Scholar 

  • Williams M, Rastetter EB, Fernandes DN, Goulden ML, Shaver GR, Johnson LC (1997) Predicting gross primary productivity in terrestrial ecosystems. Ecol Appl 7:882–894

    Article  Google Scholar 

  • Zak DR, Holmes WE, Tomlinson MJ, Pregitzerand KS, Burton AJ (2006) Microbial cycling of C and N in northern hardwood forests receiving chronic atmospheric NO. Ecosystems 9:242–253

    Article  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Dr. David Gustafsson and Dr. Louise Karlberg for technical advice on the modelling, as well as comments on the manuscript. The work formed part of the LUSTRA research programme, supported by the Foundation for Strategic Environmental Research, Mistra.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Svensson.

Appendix 1

Appendix 1

List of equations

Equation

Definition

No.

Plant biotic processes

\( C_{{Atm \to a}} = \varepsilon _{L} f(T_{l} )f(CN_{l} )f(E_{{ta}} /E_{{tp}} )R_{{s,pl}} \)where ε L is a parameter representing the radiation use efficiency.

Rate of photosynthesis (g C m−2 day−1)

(1)

\( f(T_{l} ) = \begin{array}{*{20}c} {0} \\ {{{{\left( {T_{l} - p_{{mn}} } \right)}} \mathord{\left/ {\vphantom {{{\left( {T_{l} - p_{{mn}} } \right)}} {{\left( {p_{{o1}} - p_{{mn}} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {p_{{o1}} - p_{{mn}} } \right)}}}} \\ {1} \\ {{1 - {{\left( {T_{l} - p_{{o2}} } \right)}} \mathord{\left/ {\vphantom {{{\left( {T_{l} - p_{{o2}} } \right)}} {{\left( {p_{{mx}} - p_{{o2}} } \right)}}}} \right. \kern-\nulldelimiterspace} {{\left( {p_{{mx}} - p_{{o2}} } \right)}}}} \\ {0} \\ \end{array} \quad \begin{array}{*{20}c} {{T_{l} < p_{{mn}} }} \\ {{p_{{mn}} \le T_{l} \le p_{{o1}} }} \\ {{p_{{o1}} < T_{l} < p_{{o2}} }} \\ {{p_{{o2}} \le T_{l} \le p_{{mx}} }} \\ {{T_{l} > p_{{mx}} }} \\ \end{array} \)where p mn , p o1 , p o2 and p mx are parameters.

Response function for leaf temperature (−)

(2)

\( f(CN_{l} ) = \begin{array}{*{20}c} {1} & {{CN_{{leaf}} < p_{{CN,Opt}} }} \\ {{1 + \frac{{CN_{{leaf}} - p_{{CN,Opt}} }} {{p_{{CN,Opt - }} p_{{CN,Th}} }}}} & {{p_{{CN,Opt}} \le CN_{{leaf}} \le p_{{CN,Th}} }} \\ {0} & {{CN_{{leaf}} > p_{{CN,Th}} }} \\ \end{array} \)where p CN,Opt and p CN,Th are parameters and CN leaf is the C:N ratio in the leaf.

Response function for leaf C:N ratio (−)

(3)

\( f{\left( {E_{{ta}} /E_{{tp}} } \right)} = \frac{{E_{{ta}} }} {{E_{{tp}} }} \)

Response function for soil moisture (−)

(4)

\( \begin{aligned}{} & C_{{a \to Root}} = f_{{root}} \cdot C_{{Atm \to a}} \\ & C_{{a \to Leaf}} = f_{{leaf}} \cdot C_{{Atm \to a}} \\ & C_{{a \to Stem}} = {\left( {{\left( {1 - f_{{root}} - f_{{leaf}} } \right)} \cdot C_{{Atm \to a}} } \right)} \cdot {\left( {1 - f_{{cr}} } \right)} \\ & C_{{a \to CRoot}} = {\left( {{\left( {1 - f_{{root}} - f_{{leaf}} } \right)} \cdot C_{{Atm \to a}} } \right)} \cdot f_{{cr}} \\ \end{aligned} \)where f root , f leaf and f cr are parameters.

Carbon allocation to root, leaf, stem and coarse root respectively (g C m−2 day−1)

(5)

\( C_{{Leaf \to Resp}} = k_{{mrespleaf}} \cdot f{\left( {T_{a} } \right)} \cdot C_{{leaf}} + k_{{gresp}} \cdot C_{{a \to Leaf}} \)

where k mrespleaf is the maintenance respiration coefficient for leaves, k gresp is the growth respiration coefficient, and f(T a ) is the temperature response. The equation calculates respiration from stem, roots and coarse roots by exchanging k mrespleaf to k mrespstem , k mresproot , k mrespcroot , and using the corresponding storage pools.

Plant growth and maintenance respiration from leaves (g C m−2 day−1)

(6)

\( f(T_{a} ) = t_{{Q10}} ^{{{(T_{a} - t_{{Q10bas}} )} \mathord{\left/ {\vphantom {{(T_{a} - t_{{Q10bas}} )} {10}}} \right. \kern-\nulldelimiterspace} {10}}} \)

where t Q10 and t Q10bas are parameters.

Air temperature response function for respiration (−)

(7)

\( C_{{Leaf \to Litter}} = l_{{Lc}} \cdot C_{{Leaf}} \cdot e^{{(A_{l} \cdot k_{{LAI}} )}} \)

where l Lc is a rate parameter, A l the LAI and k LAI the LAI Enhanced Coefficient parameter. Stem, coarse roots and fine roots are calculated analogously using l Sc , l CRc and l Rc , except for the exponential function for enhanced leaf litterfall.

Leaf litter rate carbon (day−1)

(8)

\( N_{{Demand}} = {\left( {\frac{{C_{{a \to Root}} }} {{cn_{{MinRoot}} }} + \frac{{C_{{a \to CRoot}} }} {{cn_{{MinCRoot}} }} + \frac{{C_{{a \to Stem}} }} {{cn_{{MinStem}} }} + \frac{{C_{{a \to Leaf}} }} {{cn_{{MinLeaf}} }}} \right)} - N_{{MobileReallo \to Leaf}} \)

where cn MinRoot , cn MinCRoot , cn MinStem and cn MinLeaf are parameters and N MobileReallo is equal to the nitrogen content in the mobile nitrogen pool at that time-step.

Plant nitrogen demand (g N m−2 day−1)

(9)

\( N_{{Mineral \to Plant}} = f_{{NUpt}} \cdot {\left( {N_{{NO_{3} }} + N_{{NH_{4} }} } \right)} \)where f NUpt is a parameter.

Plant uptake of mineral nitrogen (g N m−2 day−1)

(10)

\( \begin{aligned}{} & N_{{Organic \to Plant}} = N_{{Litter}} o_{L} \cdot \frac{{N_{{Litter}} o_{L} }} {{{\left( {N_{{Litter}} o_{L} + N_{{Humus}} o_{H} } \right)}}} \\ & + N_{{Humus}} o_{H} \cdot \frac{{N_{{Humus}} o_{H} }} {{{\left( {N_{{Litter}} o_{L} + N_{{Humus}} o_{H} } \right)}}} \\ \end{aligned} \)

where o L and o H are parameters for maximum uptake rates.

Plant uptake of organic nitrogen (g N m−2 day−1)

(11)

\( \begin{aligned}{} & N_{{a \to Root}} = \min (N_{a} ,\frac{{C_{{a \to Root}} }} {{cn_{{MinRoot}} }}) \\ & N_{{a \to CRoot}} = \min (N_{a} - N_{{a \to Root}} ,\frac{{C_{{a \to CRoot}} }} {{cn_{{MinCRoot}} }}) \\ & N_{{a \to Stem}} = \min (N_{a} - N_{{a \to Root}} - N_{{a \to CRoot}} ,\frac{{C_{{a \to Stem}} }} {{cn_{{MinStem}} }}) \\ & N_{{a \to Leaf}} = \min (N_{a} - N_{{a \to Root}} - N_{{a \to CRoot}} - N_{{a \to Stem}} ,\frac{{C_{{a \to Leaf}} }} {{cn_{{MinLeaf}} }}) \\ \end{aligned} \)

where cn MinRoot ; cn MinCRoot , cn MinStem and cn MinLeaf are parameters.

Nitrogen allocation to root, coarse root, stem and leaf respectively (g N m−2 day−1)

(12)

\( N_{{Leaf \to Litter}} = l_{{Lc}} \cdot N_{{Leaf}} \cdot e^{{(A_{l} \cdot k_{{LAI}} )}} \)

Leaf litter rate nitrogen (day−1)

(13)

\( C_{{Leaf \to Mobile}} = C_{{Leaf \to LitterSurface}} \cdot m_{{retain}} \)

where m retain is a parameter.

Carbon retention at leaf litterfall (g C m−2 day−1)

(14)

\( N_{{Leaf \to Mobile}} = {C_{{Leaf \to Mobile}} } \mathord{\left/ {\vphantom {{C_{{Leaf \to Mobile}} } {cn_{{MinLeaf}} }}} \right. \kern-\nulldelimiterspace} {cn_{{MinLeaf}} } \)

where cn MinLeaf is a parameter.

Nitrogen retention at leaf litterfall (g N m−2 day−1)

(15)

\( C_{{Mobile \to Leaf}} = C_{{Mobile}} \cdot m_{{shoot}} \)

where m shoot is a parameter.

Reallocation of carbon from mobile pool to leaves at leafing (g C m−2 day−1)

(16)

\( N_{{Mobile \to Leaf}} = N_{{Mobile}} \cdot m_{{shoot}} \)

Reallocation of nitrogen from mobile pool to leaves at leafing (g N m−2 day−1).

(17)

Soil nitrogen and carbon processes

\( C_{{DecompL}} = k_{l} f(T)f(\theta )C_{{Litter}} \)

where k l is a parameter. Decomposition of the humus pool is calculated analogously using the parameter k h .

Decomposition of litter, carbon (g C m−2 day−1)

(18)

\( \begin{array}{l}C_{{Litter \to CO_{2} }} = (1 - f_{{e,l}} ) \cdot C_{{DecompL}}\\C_{{Litter \to Humus}} = f_{{e,l}} f_{{h,l}} C_{{DecompL}}\\C_{{Litter \to Litter}} = f_{{e,l}} (1 - f_{{h,l}} ) \cdot C_{{Decomp}}\end{array} \)

where f e,l and f h,l are parameters.

Decomposition products from litter (g C m−2 day−1)

(19)

\( C_{{Humus \to CO_{2} }} = (1 - f_{{eh}} ) \cdot C_{{DecompH}} \)

where f e,h parameter is a parameter.

Decomposition products from humus (g C m−2 day−1)

(20)

\( N_{{Litter \to Humus}} = C_{{Litter \to Humus}} /cn_{m} \)

where cn m is a parameter representing the C:N ratio of the microbes.

Decomposition of litter, nitrogen (g N m−2 day−1)

(21)

\( N_{{Litter \to NH_{4} }} = C_{{DecompL}} {\left( {\frac{1} {{CN_{{Litter}} }} - \frac{{f_{{e,l}} }} {{cn_{m} }}} \right)} \)

Mineralisation / immobilisation of nitrogen from humus is calculated analogously. A negative value of the flux means that a net immobilisation takes place.

Mineralisation/immobilisation of nitrogen (g N m−2 day−1)

(22)

\( C_{{Litter1 \to DO}} = d_{{DOL1}} f(T)f(\theta )C_{{Litter1}} \)

where d DOL is a rate parameter and f(T) and f(θ) are the common response functions for temperature and soil moisture. The equation is used analogously to calculate the flux of nitrogen from litter to the dissolved organic nitrogen pool.

Flux from litter to dissolved organic carbon (g C m−2 day−1)

(23)

\( C_{{Humus \to DO}} = f(T)f(\theta ) \cdot {\left( {d_{{DOH}} C_{{Humus}} - d_{{DOD}} (z)C_{{DO}} } \right)} \)

where d DOH is the rate parameter for formation of dissolved organic C, d DOD is the rate parameter for the fixation of dissolved organic C, f(T) and f(θ) are the common response functions for temperature and soil moisture, θ(z) is the soil moisture content and Δz is the depth of the soil horizon. The equation is used analogously to calculate the flux of nitrogen from humus to the dissolved organic nitrogen pool.

Flux from humus to dissolved organic carbon (g C m−2 day−1)

(24)

\( q_{{DOC}} = \frac{{C_{{DO}} (z)}} {{\theta (z)\Delta z}} \cdot q_{w} \)

where q w is the vertical water flow. The equation is used analogously to calculate the flux of dissolved organic nitrogen.

Vertical redistribution of dissolved organic carbon (gC m−2 day−1)

(25)

\( \begin{array}{ll}f(T)=1 & T > t_{max}\\f(T)=\left(\frac{T-t_{min}}{t_{max}-t_{min}}\right)^2 & t_{min}<T < t_{max}\\ f(T)=0 & T < t_{min}\end{array} \)

where t min and t max are parameters.

Response function for soil temperature (Ratkowsky function) (-)

(26)

\( \begin{array}{ll}f(\theta (z))=p_{\theta satact} & \theta (z)= \theta_ {s}\\ f(\theta (z))=min\left(\begin{array}{l}\left( \frac{\theta_s - \theta (z)}{p_{\theta Upp}}\right)^{p_{\theta p}} (1-p_{\theta satact})+p_{\theta satact},\\\left(\frac{\theta(z)-\theta_{wilt}}{p_{\theta Low}}\right)^{p_{\theta p}} \end{array} \right) & \theta_{wilt}<\theta(z)<\theta _s\\f(\theta)=0 & \theta(z)< \theta _{wilt}\\ \end{array} \)

where pθsatact, pθUpp, pθLow and pθp are parameters and the variables, θswilt and θ are the soil moisture content at saturation, at wilting point and at the actual soil moisture content respectively.

Response function for soil moisture (-)

(27)

Plant abiotic processes

\( A_{l} = C_{{Leaf}} \cdot p_{{l,sp}} \)

where p l,sp is a parameter for the specific leaf mass.

Leaf area index (m2 m−2)

(28)

\( R_{{s,pl}} = {\left( {1 - e^{{ - k_{{rn}} \frac{{A_{l} }} {{f_{{cc}} }}}} } \right)} \cdot f_{{cc}} {\left( {1 - a_{{pl}} } \right)}R_{{is}} \)

where k rn is the light use extinction coefficient given as a single parameter common for all plants, f cc the surface canopy cover and a pl the plant albedo.

Plant interception of global radiation (MJ m−2 day−1)

(29)

\( r_{s} = \frac{1} {{\max (A_{l} {\kern 1pt} g_{l} ,0.001)}} \)

where g l is the stomatal conductance.

Stomatal resistance (s m−1)

(30)

\( g_{l} = \frac{{R_{{is}} }} {{R_{{is}} + g_{{ris}} }}\frac{{g_{{\max }} }} {{1 + \frac{{{\left( {e_{s} - e_{a} } \right)}}} {{g_{{vpd}} }}}} \)

where g ris , g max and g vpd are parameter.

Stomatal conductance per leaf area (m s−1)

(31)

\( f_{{cc}} = p_{{c\max }} (1 - e^{{ - p_{{ck}} A_{l} }} ) \)

where p cmax and p ck are parameters .

Surface canopy cover (m2 m−2)

(32)

\( L_{\upsilon } E_{{tp}} = \frac{{\Delta R_{n} + \rho _{a} c_{p} \frac{{(e_{s} - e)}} {{r_{a} }}}} {{\Delta + \gamma {\left( {1 + \frac{{r_{s} }} {{r_{a} }}} \right)}}} \)

where R n is net radiation available for transpiration, e s is the vapour pressure at saturation, e is the actual vapour pressure, ρ a is air density, c p is the specific heat of air at constant pressure, L ν is the latent heat of vaporisation, Δ is the slope of saturated vapour pressure versus temperature curve, γ is the psychrometric “constant”, r s is an “effective” surface resistance and r a is the aerodynamic resistance.

Potential transpiration (mm day−1)

(33)

\( E_{{ta}} ^{*} = E_{{tp}} ^{*} {\int\limits_{z_{r} }^0 {f_{\psi } (z)f_{T} (z)r(z)} } \)

where r(z) is the relative root density distribution, z r is root depth and f ψ , and f T are response functions for soil water potential and soil temperature.

Actual transpiration before compensatory uptake (mm day−1)

(34)

\( E_{{ta}} = E_{{ta}} ^{*} + f_{{umov}} \cdot (E_{{tp}} ^{*} - E_{{ta}} ^{*} ) \)

where f umov is the degree of compensation, E * ta is the uptake without any account of compensatory uptake and E * tp is the potential transpiration with eventual reduction due to interception evaporation.

Actual transpiration (mm day−1)

(35)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, M., Jansson, PE. & Berggren Kleja, D. Modelling soil C sequestration in spruce forest ecosystems along a Swedish transect based on current conditions. Biogeochemistry 89, 95–119 (2008). https://doi.org/10.1007/s10533-007-9134-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-007-9134-y

Keywords

Navigation