Skip to main content
Log in

Methods used to reveal genetic diversity in the colony-forming prymnesiophytes Phaeocystis antarctica, P. globosa and P. pouchetii—preliminary results

  • Short Communication
  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Previous work on the genetic diversity of Phaeocystis used ribosomal DNA and internal transcribed spacer (ITS) sequence analyses to show that there is substantial inter- and intraspecific variation within the genus. First attempts to trace the biogeographical history of strains in Antarctic coastal waters were based on a comparison of ITS sequences. To gain deeper insights into the population structure and bloom dynamics of this microalga it is necessary to quantify the genetic diversity within populations of P. antarctica from different locations (i.e., each of the three major gyres in the Antarctic continental waters) and to calculate the gene flow between them. Here we describe methods to quantify genetic diversity and our preliminary results for P. antarctica in comparison to two other colonial species: P. globosa and P. pouchetii. For this study of genetic diversity, two fingerprinting techniques were used. First, amplified fragment-length polymorphisms (AFLPs) were established as a pre-screening tool to assess clone diversity and to select divergent clones prior to physiological investigations. Second, the more-powerful microsatellite markers were established to assess population structure and biogeography more accurately. Results show differences in the AFLP patterns between isolates of P. antarctica from different regions, and that a wide variety of microsatellite motifs could be obtained from the three Phaeocystis species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Arrigo KR, Robinson DH, Worthen DL, Dunbar RB, DiTullio GR, van Woert M, Lizotte MP (1999) Phytoplankton community structure and the drawdown of nutrients and CO2 in the Southern Ocean. Science 283:365–367

    Article  Google Scholar 

  • Baumann MEM, Jahnke J (1986) Marine Planktonalgen der Arktis. I. Die Haptophycee Phaeocystis pouchetii. Mikrokosmos 75:262–265

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Edwards KJ, Barker JHA, Daly A, Jones C, Karp A (1996) Microsatellite libraries enriched for several microsatellite sequences in plants. Biotechniques 20:758–760

    Google Scholar 

  • Evans KM, Hayes PK (2004) Microsatellite markers for the cosmopolitan marine diatom Pseudo-nitzschia pungens. Mol Ecol Note 4:125–126

    Article  Google Scholar 

  • Jahnke J, Baumann MEM (1986) Die marine Planktonalge Phaeocystis globosa: eine Massenform unserer Küstengewässer. Mikrokosmos 75:357–359

    Google Scholar 

  • Jahnke J, Baumann MEM (1987) Differentiation between Phaeocystis pouchetii (Har.) Lagerheim and Phaeocystis globosa Scherffel I. Colony shapes and temperature tolerances. Hydrobiol Bull 21:141–147

    Article  Google Scholar 

  • Jahnke J (1989) The light and temperature dependence of growth rate and elemental composition of Phaeocystis globosa Scherffel and P. pouchetii (Har.) Lagerh. in batch cultures. Neth J Sea Res 23:15–21

    Article  Google Scholar 

  • John U, Groben R, Beszteri B, Medlin LK (2004) Utility of Amplified Fragment Length Polymorphisms (AFLP) to analyse genetic structures within the Alexandrium tamarense species complex. Protist 155:169–179

    Article  Google Scholar 

  • Karsten G (1905) Das Phytoplankton des Antarktischen Meeres nach dem Material der deutschen Tiefsee-Expedition 1898–1899. In: Chun C (ed) Wissenschaftliche Ergebnisse der deutschen Tiefsee-Expedition auf dem Dampfer “Valdivia” 1898–1899. Gustaf Fischer Verlag, Jena

  • Kornmann P (1955) Beobachtungen an Phaeocystis-Kulturen. Helgoländer wiss. Meeresunters 5:218–233

    Article  Google Scholar 

  • Lagerheim G (1893) Phaeocystis, nov. gen., grundadt pa Tetraspora Poucheti Har. Botaniska Notiser. 32–33

  • Lagerheim G (1896) Über Phaeocystis Poucheti (Har.) Lagerh., eine Plankton-Flagellate. Öfvers. af Vet. Akad Förhandl 53:277–288

    Google Scholar 

  • Lange M (1997) Phylogeny and Taxonomy of the genus Phaeocystis (Prymnesiophyceae). Dissertation, University of Bremen, Germany, 170 pp

  • Lange M, Chen Y, Medlin LK (2002) Molecular genetic delineation of Phaeocystis species (Prymnesiophyceae) using coding and non-coding regions of nuclear and plastid genomes. Eur J Phycol 37:77–92

    Article  Google Scholar 

  • Medlin LK, Lange M, Baumann MEM (1994) Genetic differentiation among three colony-forming species of Phaeocystis. Phycologia 33:199–212

    Google Scholar 

  • Müller J (2005) Genetic fingerprints of microalgal culture strains: amplified fragment length polymorphism (AFLP) for investigations below the species level. Dissertation, University of Goettingen, Germany, 100 pp

  • Olbers D, Gouretski V, Seiss G, Shröter J (1962) Hydrographic Atlas of the Southern Ocean. Druckhaus Nord, Bremerhaven, 82 plates

  • Pouchet MG (1892) Sur une algue pélagique nouvelle. Compt. Rend. Hebd. Séances Mém. Soc Biol 44:34–36

    Google Scholar 

  • Scherffel A (1899) Phaeocystis globosa n.sp. (Vorläufige Mitteilung). Berichte der Deutschen Botanischen Gesellschaft 17:317–318

    Google Scholar 

  • Scherffel A (1900) Phaeocystis globosa nov. spec. nebst einigen Betrachtungen, Über die Phylogenie niederer, insbesondere brauner Organismen. Wissenschaftliche Meeresuntersuchungen Abteilung Helgoland N.F. Bd. 4:1–29

  • Smith WO, Codispoti LA, Nelson DM, Manley T, Buskey EJ, Niebauer HJ, Cota GF (1991) Importance of Phaeocystis blooms in the high-latitude ocean carbon cycle. Nature 352:514–516

    Article  Google Scholar 

  • Stefels J (1997) The smell of the Sea. Production of dimethylsulphoniopropionate and its conversion into dimethylsulphide by the marine phytoplankton genus Phaeocystis. Dissertation, University of Groningen

  • Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods) 4.0 Beta, Florida State University, CD-ROM

  • Verity PG, Smetacek V (1996) Organism life cycles, predation, and the structure of marine pelagic ecosystems. Mar Ecol Prog Ser 130:277–293

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Vandelee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP—a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  Google Scholar 

  • Wood AM, Leatham T (1992) The species concept in phytoplankton ecology. J Phycol 28:723–729

    Article  Google Scholar 

  • Zingone A, Crétiennot-Dinet MJ, Lange M, Medlin LK (1999) Morphological and genetic characterisation of Phaeocystis cordata and P. jahnii (Prymnesiophyceae), two new species from the Mediterranean Sea. J Phycol 35:1322–1337

    Article  Google Scholar 

Download references

Acknowledgement

This research was funded by the German Science Foundation (DFG) through a postgraduate research fellowship (ME 1480/2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steffi Gaebler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaebler, S., Hayes, P.K. & Medlin, L.K. Methods used to reveal genetic diversity in the colony-forming prymnesiophytes Phaeocystis antarctica, P. globosa and P. pouchetii—preliminary results. Biogeochemistry 83, 19–27 (2007). https://doi.org/10.1007/s10533-007-9084-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-007-9084-4

Keywords

Navigation