Skip to main content
Log in

Succession-driven changes in soil respiration following fire in black spruce stands of interior Alaska

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Boreal forests are highly susceptible to wildfire, and post-fire changes in soil temperature and moisture have the potential to transform large areas of the landscape from a net sink to a net source of carbon (C). Understanding the ecological controls that regulate these disturbance effects is critical to developing models of ecosystem response to changes in fire frequency and severity. This paper combines laboratory and field measurements along a chronosequence of burned black spruce stands into regression analyses and models that assess relationships between moss succession, soil microclimate, decomposition, and C source-sink dynamics. Results indicate that post-fire changes in temperature and substrate quality increased decomposition in humic materials by a factor of 3.0 to 4.0 in the first 7 years after fire. Bryophyte species exhibited a distinct successional pattern in the first five decades after fire that corresponded to decreased soil temperature and increased C accumulation in organic soils. Potential rates of C exchange in mosses were greatest in early successional species and declined as the stand matured. Residual sources of CO2 (those not attributed to moss respiration or humic decomposition) increased as a function of stand age, reflecting increased contributions from roots as the stand recovered from disturbance. Together, the field measurements, laboratory experiments, and models provide strong evidence that interactions between moss and plant succession, soil temperature, and soil moisture largely regulate C source-sink dynamics from black spruce systems in the first century following fire disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ΔR :

non-microclimate driven changes in respiration

B:

burned material

BD:

bulk density

C:

carbon

CO :

control material

FD:

fibric decomposition

F(T):

flux associated with a given incubation temperature

FT:

field CO2 flux

HD:

humic decomposition

MR:

moss respiration

RF:

temperature functions for respiration

RR:

residual sources of respiration

T :

temperature

T h :

thickness of soil layer

WHC:

water holding capacity

References

  • A.N.D. Auclair T.B. Carter (1993) ArticleTitleForest wildfires as a recent source of CO2 at northern latitudes Can. J. For. Res. 23 1530–1536

    Google Scholar 

  • R.A. Black L.C. Bliss (1980) ArticleTitleReproductive ecology of Picea mariana at treeline near Inuvik, Northwest Territories, Canada Ecol. Monogr. 50 IssueID3 331–354 Occurrence Handle10.2307/2937255

    Article  Google Scholar 

  • E. Bååth K. Arnebrant (1994) ArticleTitleGrowth rate and response of bacterial communities to pH in limed and ash treated forest soils Soil Biol. Biochem. 26 995–1001 Occurrence Handle10.1016/0038-0717(94)90114-7

    Article  Google Scholar 

  • B. Bond-Lamberty C. Wang S.T. Gower (2004) ArticleTitleNet primary production and net ecosystem production of a boreal black spruce wildfire chronosequence Glob. Change Biol. 10 473–487 Occurrence Handle10.1111/j.1529-8817.2003.0742.x

    Article  Google Scholar 

  • R.A. Burke R.G. Zepp M.A. Tarr W.M. Miller B.J. Stocks (1997) ArticleTitleEffect of fire on soil-atmosphere exchange of methane and carbon dioxide in Canadian boreal forest sites J. Geophys. Res. 102 IssueIDD24 29289–29300 Occurrence Handle10.1029/97JD01331

    Article  Google Scholar 

  • T.R. Christensen S. Jonasson A. Michelsen T.V. Calaghan M. Hastrom (1998) ArticleTitleEnvironmental control on soil respiration in the Eurasian and Greenlandic Arctic J. Geophys. Res. 103 29015–29021 Occurrence Handle10.1029/98JD00084

    Article  Google Scholar 

  • R.S. Clymo P.M. Hayward (1982) The ecology of Sphagnum A.J.E. Smith (Eds) Bryophyte Ecology Chapman and Hall London 229–289

    Google Scholar 

  • R.K. Dixon S. Brown R.A. Houghton A.M. Solomon M.C. Trexler J. Wisniewski (1994) Ecological Studies 63. Long-term Forest Dynamics of the Temperate Zone: A Case Study of Late-quaternary Forests in Eastern North America Springer-Verlag New York 439

    Google Scholar 

  • P.W. Flanagan A.K. Veum (1974) Relationships between respiration, weight loss, temperature and moisture in organic residues on tundra A.J. Holding O.W. Heal S.F. MacLean SuffixJr. P.W. Flanagan (Eds) Soil Organisms and Decomposition in Tundra Tundra Biome Steering Committee Stockholm 249–277

    Google Scholar 

  • M.D. Flannigan K.A. Logan B.D. Amiro W.R. Skinner B.J. Stocks (2005) ArticleTitleFuture area burned in Canada Climatic Change 72 1–16 Occurrence Handle10.1007/s10584-005-5935-y

    Article  Google Scholar 

  • D.R. Foster (1985) ArticleTitleVegetation development following fire in Picea mariana (black spruce)-Pleurozium forests of southeastern Labrador, Canada J. Ecol. 73 517–534 Occurrence Handle10.2307/2260491

    Article  Google Scholar 

  • H. Fritze T. Pennanen J. Pietkäinen (1993) ArticleTitleRecovery of soil microbial biomass and activity from prescribed burning Can. J. For. Res. 23 1286–1290

    Google Scholar 

  • Gillett N.P., Weaver A.J., Zwiers F.W. and Flannigan M.D. 2004. Detecting the effect of climate change on Canadian forest fires. Geophys. Res. Lett. 31: L18211 1– 4. doi: 10.1029/2004Gh020876.

  • E. Gorham (1991) ArticleTitleNorthern peatlands: role in the carbon cycle and probable responses to climate warming Ecol. Appl. 1 182–195

    Google Scholar 

  • M.L. Goulden S.C. Wofsy J.W. Harden S.E. Trumbore P.M. Crill S.T. Gower T. Fries B.C. Daube S.M. Fan D.J. Sutton A. Bazzaz J.W. Munger (1998) ArticleTitleSensitivity of boreal forest carbon to soil thaw Science 279 214–217 Occurrence Handle10.1126/science.279.5348.214

    Article  Google Scholar 

  • J. Gulledge J. Schimel (2000) ArticleTitleControls on CO2 and CH4 fluxes across a mosaic of forest ecosystems in interior Alaska Ecosystems 3 269–282 Occurrence Handle10.1007/s100210000025

    Article  Google Scholar 

  • J.W. Harden K.P. O’Neill S.E. Trumbore H. Veldhuis B.J. Stocks (1997) ArticleTitleMoss and soil contributions to the annual net carbon flux of a maturing boreal forest J. Geophys. Res. 102 IssueIDD24 28805–28816 Occurrence Handle10.1029/97JD02237

    Article  Google Scholar 

  • J.W. Harden S.E. Trumbore B.J. Stocks A. Hirsch S.T. Gower K.P. O’Neill E.S. Kasischke (2000) ArticleTitleThe role of fire in the boreal carbon budget Glob. Change Biol. 6 IssueIDs1 174–184 Occurrence Handle10.1046/j.1365-2486.2000.06019.x

    Article  Google Scholar 

  • J.A. Hicke G.P. Asner E.S. Kasischke N.H.F. French J.T. Randerson B.J. Stocks C.J. Tucker S.O. Los C.B. Field (2003) ArticleTitlePost fire response of North American net primary productivity measured by satellite imagery Glob. Change Biol. 9 1145–1157 Occurrence Handle10.1046/j.1365-2486.2003.00658.x

    Article  Google Scholar 

  • J.F. Johnstone E.S. Kasischke (2005) ArticleTitleStand-level effects of burn severity on post-fire regeneration in a recently burned black spruce forest Can J. For. Res. 35 2151–2163 Occurrence Handle10.1139/x05-087

    Article  Google Scholar 

  • E.S. Kasischke K.P. O’Neill N.H.F. French L.L. Borgeau-Chavez (2000) Controls on patterns of biomass burning in Alaskan boreal forests E.S. Kasischke B.J. Stocks (Eds) FireClimate Changeand Carbon Cycling in the North American Boreal Forest Springer-Verlag New York 173–196

    Google Scholar 

  • M. Litvak S. Miller S.C. Wofsy M. Goulden (2003) ArticleTitleEffect of stand age on whole ecosystem CO2 exchange in the Canadian boreal forest J. Geophys. Res. 108 IssueID3 WFX6-1–WFX6-11 Occurrence Handle10.1029/2001JD000854

    Article  Google Scholar 

  • R.E. Longton (1988) Biology of Polar Bryophytes and Lichens Cambridge University Press Cambridge

    Google Scholar 

  • D.A. MacLean S.J. Woodley M.G. Weber R.W. Wein (1983) Fire and nutrient cycling R.W. Wein D.A. MacLean (Eds) The Role of Fire in the Northern Circumpolar Ecosystem John Wiley and Sons Chichester, England 11–132

    Google Scholar 

  • E. Maikawa K.A. Kershaw (1976) ArticleTitleStudies on lichen-dominated systems. XIX. The post fire recovery sequence of black-spruce lichen woodland in the Abitau Lake Region Can. J. Bot. 54 2679–2687 Occurrence Handle10.1139/b76-288

    Article  Google Scholar 

  • D.H. Mann C.L. Fastie E.L. Rowland N.H. Bigelow (1995) ArticleTitleSpruce succession, disturbanceand geomorphology on the Tanana River floodplain, Alaska Ecoscience 2 184–195

    Google Scholar 

  • O’Neill K.P. 2000. Changes in carbon dynamics following wildfire in soils of interior Alaska. Ph.D. Thesis. Duke University, Durham, NC.

  • K.P. O’Neill E.S. Kasischke D.D. Richter (2002) ArticleTitleEnvironmental controls on soil CO2 efflux following fire in black sprucewhite spruceand aspen stands of interior Alaska Can. J. For. Res. 32 IssueID9 1525–1541 Occurrence Handle10.1139/x02-077

    Article  Google Scholar 

  • K.P. O’Neill E.S. Kasischke D.D. Richter (2003) ArticleTitleSeasonal and decadal patterns of soil carbon uptake and emission along an age-sequence of burned black spruce stands in interior Alaska J. Geophys. Res. Atmos. 108 IssueIDD1 8155 Occurrence Handle10.1029/2001JD000443

    Article  Google Scholar 

  • J. Pietikäinen H. Fritze (1996) Soil microbial biomass: determination and reaction to burning and ash fertilization J.G. Goldammer V.V. Furyaev (Eds) Fire in Ecosystems of Boreal Eurasia Kluwer Academic Publishers The Netherlands 337–349

    Google Scholar 

  • J. Pietikäinen R. Hiukka H. Fritze (2000) ArticleTitleDoes short-term heating of forest humus change its properties as a substrate for microbes? Soil Biol. Biochem. 32 277–288 Occurrence Handle10.1016/S0038-0717(99)00164-9

    Article  Google Scholar 

  • G. Rapalee S.E. Trumbore E.A. Davidson J.W. Harden H. Veldhuis (1998) ArticleTitleEstimating soil carbon stocks and fluxes in a boreal forest landscape Global Biogeochem. Cyc. 12 687–701 Occurrence Handle10.1029/98GB02336

    Article  Google Scholar 

  • D.D. Richter K.P. O’Neill E.S. Kasischke (2000) Stimulation of soil respiration in burned black spruce (Picea mariana L.) forest ecosystems: a hypothesis E.S. Kasischke B.J. Stocks (Eds) FireClimate Changeand Carbon Cycling in the North American Boreal Forest Springer-Verlag New York 164–178

    Google Scholar 

  • R.E. Schlentner K. Cleve ParticleVan (1985) ArticleTitleRelationships between CO2 evolution from soil, substrate temperatureand substrate moisture in four mature forest types in interior Alaska Can. J. For. Res. 15 97–106

    Google Scholar 

  • O. Skre W.C. Oechel (1981) ArticleTitleMoss functioning in different taiga ecosystems in interior Alaska. I. Seasonal, phenotypic, and drought effects of photosynthesis and response patterns Oecologia 48 50–59 Occurrence Handle10.1007/BF00346987

    Article  Google Scholar 

  • B.J. Stocks M.A. Fosberg M.B. Wotton T.J. Lynham K.C. Ryan (2000) Climate change and forest fire activity in North American boreal forests E.S. Kasischke B.J. Stocks (Eds) FireClimate Changeand Carbon Cycling in the North American Boreal Forest Springer-Verlag New York 312–319

    Google Scholar 

  • B.J. Stocks M.A. Fosberg T.J. Lynham L. Mearns B.M. Wotton Q. Yang J.-Z. Jin K. Lawrence G.R. Hartley J.A. Mason D.W. McKenney (1998) ArticleTitleClimate change and forest fire potential in Russian and Canadian boreal forests Climatic Change 38 1–13 Occurrence Handle10.1023/A:1005306001055

    Article  Google Scholar 

  • K. Cleve ParticleVan D. Sprague (1971) ArticleTitleRespiration rates in the forest floor of birch and aspen stands in interior Alaska Arc. Alp. Res. 3 IssueID1 17–26 Occurrence Handle10.2307/1550380

    Article  Google Scholar 

  • K. Cleve ParticleVan J. Yarie (1986) Interaction of temperaturemoistureand soil chemistry in controlling nutrient cycling and ecosystem development in the Alaskan taiga K. Cleve ParticleVan F.S. Chapin SuffixIII P. Flanagan L.A. Viereck C.T. Dyrness (Eds) Forest Ecosystems in the Alaskan Taiga Springer-Verlag New York 160–189

    Google Scholar 

  • K. Cleve ParticleVan L.K. Oliver P. Schlentner L.A. Viereck C.T. Dyrness (1983) ArticleTitleProductivity and nutrient cycling in taiga forest ecosystems Can. J. For. Res. 13 703–720

    Google Scholar 

  • L.A. Viereck (1975) ArticleTitleForest ecology of the Alaskan taiga Quat. Res. 3 465–495 Occurrence Handle10.1016/0033-5894(73)90009-4

    Article  Google Scholar 

  • J. Yarie S. Billings (2002) ArticleTitleCarbon balance of the taiga forest within Alaska: present and future Can. J. For. Res. 32 IssueID5 757–767 Occurrence Handle10.1139/x01-075

    Article  Google Scholar 

  • Q. Zhuang A.D. McGuire K.P. O’Neill J.W. Harden V.E. Romanovsky J. Yarie (2003) ArticleTitleModeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska J. Geophys Res. Atmos. 108 IssueID1 FFR 3-1–FFR 3-26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine P. O’Neill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Neill, K.P., Richter, D.D. & Kasischke, E.S. Succession-driven changes in soil respiration following fire in black spruce stands of interior Alaska. Biogeochemistry 80, 1–20 (2006). https://doi.org/10.1007/s10533-005-5964-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-005-5964-7

Keywords

Navigation