Skip to main content
Log in

Sulfide oxidation and nitrate reduction for potential mitigation of H2S in landfills

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Because H2S emitted by landfill sites has seriously endangered human health, its removal is urgent. H2S removal by use of an autotrophic denitrification landfill biocover has been reported. In this process, nitrate-reducing and sulfide-oxidizing bacteria use a reduced sulfur source as electron donor when reducing nitrate to nitrogen gas and oxidizing sulfur compounds to sulfate. The research presented here was performed to investigate the possibility of endogenous mitigation of H2S by autotrophic denitrification of landfill waste. The sulfide oxidation bioprocess accompanied by nitrate reduction was observed in batch tests inoculated with mineralized refuse from a landfill site. Repeated supply of nitrate resulted in rapid oxidation of the sulfide, indicating that, to a substantial extent, the bioprocess may be driven by functional microbes. This bioprocess can be realized under conditions suitable for the autotrophic metabolic process, because the process occurred without addition of acetate. H2S emissions from landfill sites would be substantially reduced if this bioprocess was introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • An SJ, Tang K, Nemati M (2010) Simultaneous biodesulphurization and denitrification using an oil reservoir microbial culture: effects of sulphide loading rate and sulphide to nitrate loading ratio. Water Res 44:1531–1541

    Article  CAS  PubMed  Google Scholar 

  • Bentzen G, Smith AT, Bennett D, Webster NJ, Reinholt F, Sletholt E, Hobson J (1995) Controlled dosing of nitrate for prevention of H2S in a sewer network and the effects on the subsequent treatment processes. Water Sci Technol 31:293–302

    Article  CAS  Google Scholar 

  • Cardoso RB, Sierra-Alvarez R, Rowlette P, Flores ER, Gómez J, Field JA (2006) Sulfide oxidation under chemolithoautotrophic denitrifying conditions. Biotechnol Bioeng 95:1148–1157

    Article  CAS  PubMed  Google Scholar 

  • Chang YJ, Chang YT, Chen HJ (2007) A method for controlling hydrogen sulfide in water by adding solid phase oxygen. Bioresour Technol 98:478–483

    Article  CAS  PubMed  Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14(3):454–458

    Article  CAS  Google Scholar 

  • Darbi A, Viraraghavan T, Butler R, Corkal D (2004) Batch studies on nitrate removal from potable water. Water SA 28(3):319–322

    Google Scholar 

  • Firer D, Friedler E, Lahav O (2008) Control of sulfide in sewer systems by dosage of iron salts: comparison between theoretical and experimental results, and practical implications. Sci Total Environ 392(1):145–156

    Article  CAS  PubMed  Google Scholar 

  • Gadekar S, Nemati M, Hill GA (2006) Batch and continuous biooxidation of sulphide by Thiomicrospira sp. CVO: reaction kinetics and stoichiometry. Water Res 40:2436–2446

    Article  CAS  PubMed  Google Scholar 

  • Garcia De Lomas J, Corzo A, Gonzalez JM, Andrades JA, Iglesias E, Montero MJ (2005) Nitrate promotes biological oxidation of sulfide in wastewater: experiment at plant-scale. Biotechnol Bioeng 93:801–811

    Article  Google Scholar 

  • He C, Li XZ, Sharma VK, Li SY (2009) Elimination of sludge odor by oxidizing slufur-containing compounds with ferrate (VI). Environ Sci Technol 43:5890–5895

    Article  CAS  PubMed  Google Scholar 

  • Hua J, Xia LJ, Wang JA, Liu XJ, Du W, Dong YL, Li GX (2004) Changes of the contamination of malodor caused by H2S from municipal landfill. Ecol Environ 13:173–176 (in Chinese)

    Google Scholar 

  • Hvitved-Jacobsen T, Vollertsen J, Matos JS (2002) The sewer as a bioreactor—a dry weather approach. Water Sci Technol 45:11–24

    CAS  PubMed  Google Scholar 

  • Jenneman GE, Moffitt PD, Bala GA, Webb RH (1999) Sulfide removal in reservoir brine by indigenous bacteria. SPE Prod Facil 14(3):219–225

    Article  CAS  Google Scholar 

  • Lei Y, Shen Z, Huang R, Wang W (2007) Treatment of landfill leachate by combined aged-refuse bioreactor and electro-oxidation. Water Res 41:2417–2426

    Article  CAS  PubMed  Google Scholar 

  • Li WB, Yao J, Tao PP, Hu H, Fang CR, Shen DS (2011) An innovative combined on-site process for the remote rural solid waste treatment—a pilot scale case study in China. Bioresour Technol 102(5):4117–4123

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Guo QW, Fang CR, Zhu YM, Shen DS (2008a) In situ nitrogen removal in phase-separate bioreactor landfill. Bioresour Technol 99:5352–5361

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Lao HM, Hu LF, Shen DS (2008b) Effects of in situ nitrogen removal on degradation/stabilization of MSW in bioreactor landfill. Bioresour Technol 99:2787–2794

    Article  CAS  PubMed  Google Scholar 

  • Long Y, Hu LF, Shen DS (2009) Nitrogen transformation in the hybrid bioreactor landfill. Bioresour Technol 100:2527–2533

    Article  CAS  PubMed  Google Scholar 

  • Mathioudakis VL, Vaiopoulou E, Aivasidis A (2006) Addition of nitrate for odor control in sewer networks: laboratory and field experiments. Glob NEST J 8(1):37–42

    Google Scholar 

  • Myhr S, Lillebø BL, Sunde E, Beeder J, Torsvik T (2002) Inhibition of microbial H2S production in an oil reservoir model column by nitrate injection. Appl Microbiol Biotechnol 58:400–408

    Article  CAS  PubMed  Google Scholar 

  • Nemati M, Jenneman GE, Voordouw G (2001a) Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnol Bioeng 74:424–434

    Article  CAS  PubMed  Google Scholar 

  • Nemati M, Mazutinec TJ, Jenneman GE, Voordouw G (2001b) Control of biogenic H2S production with nitrate and molybdate. J Ind Microbiol Biotechnol 26:350–355

    Article  CAS  PubMed  Google Scholar 

  • Oh SE, Bum MS, Yoo YB, Zubair A, Kim IS (2003) Nitrate removal by simultaneous sulfur utilizing autotrophic and heterotrophic denitrification under different organics and alkalinity conditions: batch experiments. Water Sci Technol 47(1):237–244

    CAS  PubMed  Google Scholar 

  • Snyder JW, Safir EF, Summerville GP, Middleberg RA (1995) Occupational fatality and persistent neurological sequelae after mass exposure to hydrogen sulfide. Am J Emerg Med 13:199–203

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Sun B, Li Q, Deng X, Hu J, Wu W (2014) Pilot-scale nitrogen removal from leachate by ex situ nitrification and in situ denitrification in a landfill bioreactor. Chemosphere 101:77–85

    Article  CAS  PubMed  Google Scholar 

  • Sungthong D, Reinhart DR (2011) Control of hydrogen sulfide emissions using autotrophic denitrification landfill biocovers: engineering applications. Front Environ Sci Eng 5(2):149–158

    Article  CAS  Google Scholar 

  • Tang K, An SJ, Nemati M (2010) Evaluation of autotrophic and heterotrophic processes in biofilm reactors used for removal of sulphide, nitrate and COD. Bioresour Technol 101:8109–8118

    Article  CAS  PubMed  Google Scholar 

  • Telang AJ, Ebert S, Foght JM, Westlake D, Jenneman GE, Gevertz D, Voordouw G (1997) Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl Environ Microbiol 63(5):1785–1793

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tomar M, Abdullah TH (1994) Evaluation of chemicals to control the generation of malodorous hydrogen-sulfide in waste water. Water Res 28:2545–2552

    Article  CAS  Google Scholar 

  • US EPA (1991) Hydrogen sulphide corrosion in wastewater collection and treatment system. Technical Report

  • Vaiopoulou E, Melidis P, Aivasidis A (2005) Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification. Water Res 39(17):4101–4109

    Article  CAS  PubMed  Google Scholar 

  • Wang AJ, Du DZ, Ren NQ, van Groenestijn JW (2005) An innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrificans. J Environ Sci Health 40(10):1939–1949

    Article  CAS  Google Scholar 

  • Zhang L, Catalan LJJ, Larsen AC, Kinrade SD (2008a) Effects of sucrose and sorbitol on cement-based stabilization/solidification of toxic metal waste. J Hazard Mater 151:490–498

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, De Schryver P, De Gusseme B, De Muynck W, Boon N, Verstraete W (2008b) Chemical and biological technologies for hydrogen sulfide emission control in sewer systems: a review. Water Res 42:1–12

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Shen DS, Du Y, Tao XQ, Long YY (2013) Dechlorination of polychlorinated biphenyl-contaminated soil via anaerobic composting with pig manure. J Hazard Mater 261:826–832

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (41471408, and 41101453) and the Natural Science Foundation of Zhejiang Province (LY14D010001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Yang Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Du, Y., Feng, H. et al. Sulfide oxidation and nitrate reduction for potential mitigation of H2S in landfills. Biodegradation 26, 115–126 (2015). https://doi.org/10.1007/s10532-015-9720-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-015-9720-y

Keywords

Navigation