Skip to main content
Log in

The biotransformation of ibuprofen to trihydroxyibuprofen in activated sludge and by Variovorax Ibu-1

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A bacterium was isolated from activated sewage sludge that has the ability to use ibuprofen as its sole carbon and energy source. Phylogenetic analysis of the 16S rRNA gene sequence placed the strain in the Variovorax genus within the β-proteobacteria. When grown on ibuprofen it accumulated a transient yellow intermediate that disappeared upon acidification, a trait consistent with meta ring-fission metabolites. GC/MS analysis of derivatized culture supernatant yielded two spectra consistent with trihydroxyibuprofen bearing all three hydroxyl groups on the aromatic ring. These metabolites were only detected when 3-fluorocatechol, a meta ring-fission inhibitor, was added to Ibu-1 cultures and the supernatant was then derivatized with aqueous acetic anhydride and diazomethane. These findings suggest the possibility of ibuprofen metabolism proceeding via a trihydroxyibuprofen meta ring-fission pathway. Identical spectra, consistent with these putative ring-hydroxylated trihydroxyibuprofen metabolites, were also obtained from ibuprofen-spiked sewage sludge, but only when it was poisoned with 3-fluorocatechol. The presence of the same trihydroxylated metabolites in both spiked sewage sludge and culture supernatants suggests that this trihydroxyibuprofen extradiol ring-cleavage pathway for the degradation of ibuprofen may have environmental relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    Article  CAS  PubMed  Google Scholar 

  • Bartels I, Knackmuss HJ, Reineke W (1984) Suicide inactivation of catechol 2,3 dioxygenase from Pseudomonas putida MT-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505

    PubMed Central  CAS  PubMed  Google Scholar 

  • Blakley ER (1977) The catabolism of l-tyrosine by an Arthrobacter sp. Can J Microbiol 23:1128–1139

    Article  CAS  PubMed  Google Scholar 

  • Bruland N, Wübbeler JH, Steinbüchel A (2009) 3-Mercaptopropionate dioxygenase, a cysteine dioxygenase homologue, catalyzes the initial step of 3-mercaptopropionate catabolism in the 3,3-thiodipropionic acid-degrading bacterium Variovorax paradoxus. J Biol Chem 284:660–672. doi:10.1074/jbc.M806762200

    Article  CAS  PubMed  Google Scholar 

  • Buser HR, Poiger T, Muller MD (1999) Occurrence and environmental behavior of the chiral pharmaceutical drug ibuprofen in surface waters and in wastewater. Environ Sci Technol 33:2529–2535

    Article  CAS  Google Scholar 

  • Butler CS, Mason JR (1997) Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. In: Poole RK (ed) Advances in microbial physiology, vol 38. Academic Press Limited, London

    Google Scholar 

  • Chen Y, Rosazza JPN (1994) Microbial transformation of ibuprofen by a Nocardia species. Appl Environ Microbiol 60:1292–1296

    PubMed Central  CAS  PubMed  Google Scholar 

  • D’Ascenzo G, DiCorcia A, Gentili A, Mancini R, Mastropasqua R, Nazzari M, Samperi R (2003) Fate of natural estrogen conjugates in municipal sewage transport and treatment facilities. Sci Total Environ 302:199–209

    Article  PubMed  Google Scholar 

  • Dejonghe W et al (2003) Synergistic degradation of linuron by a bacterial consortium and isolation of a single linuron-degrading Variovorax strain. Appl Environ Microbiol 69:1532–1541. doi:10.1128/aem.69.3.1532-1541.2003

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farre M et al (2001) Determination of drugs in surface water and wastewater samples by liquid chromatography-mass spectrometry: methods and preliminary result including toxicity studies with Vibrio fischeri. J Chromatogr A 938:187–197

    Article  CAS  PubMed  Google Scholar 

  • Ferrandez A, Minambres B, Garcia B, Olivera Elias R, Luengo J (1998) Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway. J Biol Chem 273:25974–25986

    Article  CAS  PubMed  Google Scholar 

  • Ferrando-Climent L, Collado N, Buttiglieri G, Gros M, Rodriguez-Roda I, Rodriguez-Mozaz S, Barceló D (2012) Comprehensive study of ibuprofen and its metabolites in activated sludge batch experiments and aquatic environment. Sci Total Environ 438:404–413

    Article  CAS  PubMed  Google Scholar 

  • Ferris M, Muyzer G, Ward D (1996) Denaturing gradient gel electrophorsis profiles of 16S RNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fujimoto J, Tran L, Sowers L (1997) Synthesis and cleavage of oligodeoxynucleotides containing a 5-hydroxyuracil residue at a defined site. Chem Res Toxicol 10:1254–1258

    Article  CAS  PubMed  Google Scholar 

  • Futamata H, Nagano Y, Watanabe K, Hiraishi A (2005) Unique kinetic properties of phenol-degrading Variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. appl environ Microbiol 71:904–911. doi:10.1128/aem.71.2.904-911.2005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Giovanni G, Neilson J, Pepper I, Sinclair N (1996) Plasmid diversity within a 2,4-dichlorophenoxyacetic acid degrading Variovorax paradoxus population isolated from a contaminated soil. J Environ Sci Health A31:963–976

    Google Scholar 

  • Haigler B, Johnson G, Suen W, Spain J (1999) Biochemical and genetic evidence for meta-ring cleavage of 2,4,5-trihydroxytoluene in Burkholderia sp. strain DNT. J Bacteriol 181:965–972

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hanlon GW, Kooloobandi A, Hutt AJ (1994) Microbial metabolism of 2-arylpropionic acids: effect of environment on the metabolism of ibuprofen by Verticillium lecanii. J Appl Microbiol 76:442–447

    CAS  Google Scholar 

  • Harayama S, Timmis K (1989) Catabolism of aromatic hydrocarbons by Pseudomonas. In: Hopwood D, Chater K (eds) Genetics of bacterial diversity. Academic Press Limited, San Diego

    Google Scholar 

  • Hollender J, Hopp J, Dott W (1997) Degradation of 4-chlorophenol via the meta cleavage pathway by comamonas testosteroni JH5. Appl Environ Microbiol 63:4567–4572

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jeon CO, Park W, Padmanabhan P, DeRito C, Snape JR, Madsen EL (2003) Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci 100:13591–13596. doi:10.1073/pnas.1735529100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jones OA, Lester JN, Voulvoulis N (2005) Pharmaceuticals: a threat to drinking water? Trends Biotechnol 23:163–167

    Article  CAS  PubMed  Google Scholar 

  • Kinney CA, Furlong ET, Werner SL, Cahill JD (2006) Presence and distribution of wastewater-derived pharmaceuticals in soil irrigated with reclaimed water. Environ Toxicol Chem 25:317–326

    Article  CAS  PubMed  Google Scholar 

  • Kolpin DW, Furlong ET, Meyer MT, Thurman EM, Zaugg SD, Barber LB, Buxton HT (2002) Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environ Sci Technol 36:1202–1211

    Article  CAS  PubMed  Google Scholar 

  • Krieg NR (1981) Enrichment and Isolation. In: Gerhardt P (ed) Manual of methods for general bacteriology. American Society for Microbiology, Washington, pp 112–142

    Google Scholar 

  • Lane DJ (1991) 16S/23S rRNA sequencing. In: Goodfellow ESM (ed) Nucleic acid techniques in bacterial systematic. Wiley, Chichester, pp 115–175

    Google Scholar 

  • Larsson E, al-Hamimi S, Jönsson JÅ (2014) Behaviour of nonsteroidal anti-inflammatory drugs and eight of their metabolites during wastewater treatment studied by hollow fibre liquid phase microextraction and liquid chromatography mass spectrometry. Sci Total Environ 485-486:300–308

    Article  CAS  PubMed  Google Scholar 

  • Lee EJD, Williams K, Day R, Graham G, Champion D (1985) Stereoselective disposition of ibuprofen enantiomers in man. Br J Clin Pharmacol 19:669–674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marco-Urrea E, Pérez-Trujillo M, Vicent T, Caminal G (2009) Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74:765–772

    Article  CAS  PubMed  Google Scholar 

  • Mars AEK T, Kaschabek SR, Van Agteren MH, Janssen DB, Reineke W (1997) Microbial degradation of chloroaromatics: use of the meta-cleavage pathway for mineralization of chlorobenzene. J Bacteriol 179:4530–4537

    Google Scholar 

  • McCullar M, Brenner R, Adams R, Focht D (1994) Construction of a novel polychlorinated biphenyl-degrading bacterium; utilization of 3,4′-dichlorobiphenyl by Pseudomonas acidovorans M3GY. Appl Environ Microbiol 60:3833–3839

    PubMed Central  CAS  PubMed  Google Scholar 

  • Miwa H, Ahmed I, Yoon J, Yokota A, Fujiwara T (2008) Variovorax boronicumulans sp. nov., a boron-accumulating bacterium isolated from soil. Int J Syst Evol Microbiol 58:286–289. doi:10.1099/ijs.0.65315-0

    Article  CAS  PubMed  Google Scholar 

  • Murdoch RW, Hay AG (2005) Formation of catechols via removal of acid side chains from ibuprofen and related aromatic acids. Appl Environ Microbiol 71:6121–6125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murdoch RW, Hay AG (2013) Genetic and chemical characterization of ibuprofen degradation by Sphingomonas Ibu-2. Microbiology 159:621–632. doi:10.1099/mic.0.062273-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Olaniran AO, Igbinosa EO (2011) Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere 83:1297–1306

    Article  CAS  PubMed  Google Scholar 

  • Olivera ER et al (1998) Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolon. Proc Natl Acad Sci USA 95:6419–6424

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pedersen JA, Yeager MA, Suffet IH (2003) Xenobiotic organic compounds in runoff from fields irrigated with treated wastewater. J Agric Food Chem 51:1360–1372

    Article  CAS  PubMed  Google Scholar 

  • Pedersen JA, Soliman M, Suffet IH (2005) Human pharmaceuticals, hormones, and personal care product ingredients in runoff from agricultural fields irrigated with treated wastewater. J Agric Food Chem 53:1625–1632

    Article  CAS  PubMed  Google Scholar 

  • Quast C et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596. doi:10.1093/nar/gks1219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Quintana JB, Weiss S, Reemtsma T (2005) Pathways and metabolites of microbial degradation of selected acidic pharmaceutical and their occurrence in municipal wastewater treated by a membrane bioreactor. Water Res 39:2654–2664

    Article  CAS  PubMed  Google Scholar 

  • Richardson ML, Bowron JM (1985) The fate of pharmaceutical chemicals in the aquatic environment. J Pharm Pharmacol 37:1–12

    Article  CAS  PubMed  Google Scholar 

  • Rudy AC, Knight PM, Brater DC, Hall SD (1991) Stereoselective metabolism of ibuprofen in humans: administration of R-S- and racemic ibuprofen. J Pharmacol Exp Ther 259:1133–1139

    CAS  PubMed  Google Scholar 

  • Santos LHMLM, Araújo AN, Fachini A, Pena A, Delerue-Matos C, Montenegro MCBSM (2010) Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. J Hazard Mater 175:45–95

    Article  CAS  PubMed  Google Scholar 

  • Satola B, Wübbeler J, Steinbüchel A (2013) Metabolic characteristics of the species Variovorax paradoxus. Appl Microbiol Biotechnol 97:541–560. doi:10.1007/s00253-012-4585-z

    Article  CAS  PubMed  Google Scholar 

  • Satsuma K (2010) Mineralisation of the herbicide linuron by Variovorax sp. strain RA8 isolated from Japanese river sediment using an ecosystem model (microcosm) Pest. Manage Sci 66:847–852. doi:10.1002/ps.1951

    CAS  Google Scholar 

  • Schweigert N, Zehnder A, Eggen R (2001) Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals Minireview. Environ Microbiol 3:81–91

    Article  CAS  PubMed  Google Scholar 

  • Siemens J, Huschek G, Siebe C, Kaupenjohann M (2008) Concentrations and mobility of human pharmaceuticals in the world’s largest wastewater irrigation system Mexico City-Mezquital Valley. Water Res 42:2124–2134

    Article  CAS  PubMed  Google Scholar 

  • Smejkal C, Vallaeys T, Burton S, Lappin-Scott H (2001) Substrate specificity of chlorophenoxyalkanoic acid-degrading bacteria is not dependent upon phylogenetically related tfdA gene types. Biol Fertil Soils 33:507–513

    Article  CAS  Google Scholar 

  • Snellinx Z, Taghavi S, Vangronsveld J, van der Lelie D (2003) Microbial consortia that degrade 2,4-DNT by interspecies metabolism: isolation and characterisation. Biodegradation 14:19–29. doi:10.1023/A:1023539104747

    Article  CAS  PubMed  Google Scholar 

  • Sørensen SR, Simonsen A, Aamand J (2009) Constitutive mineralization of low concentrations of the herbicide linuron by a Variovorax sp. strain. FEMS Microbiol Lett 292:291–296. doi:10.1111/j.1574-6968.2009.01501.x

    Article  PubMed  Google Scholar 

  • Sparnins VL, Chapman PJ (1976) Catabolism of l-tyrosine by the homoprotocatechuate pathway in gram positive bacteria. J Bacteriol 127:362–366

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stumpf M, Ternes TA, Wilken RD, Rodrigues SV, Baumann W (1999) Polar drug residues in sewage and natural waters in the state of Rio de Janeiro Brazil. Sci Total Environ 225:135–141

    Article  PubMed  Google Scholar 

  • Teufel R et al (2010) Bacterial phenylalanine and phenylacetate catabolic pathway revealed. Proc Natl Acad Sci USA 107:14390–14395

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toyama T et al (2010) Isolation and characterization of 4-tert-butylphenol-utilizing Sphingobium fuliginis strains from Phragmites australis rhizosphere sediment. Appl Environ Microbiol 76:6733–6740. doi:10.1128/aem.00258-10

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vallaeys T, Albino L, Soulas G, Wright A, Weightman A (1998) Isolation and characterization of a stable 2,4-dichlorophenoxyacetic acid degrading bacterium Variovorax paradoxus, using chemostat culture. Biotechnol Lett 20:1073–1076

    Article  CAS  Google Scholar 

  • van den Tweel WJJ, Smits JP, De Bont JAM (1988) Catabolism of DL-alpha phenylhydracrylic, phenylacetic, and 3 and 4-hydroxyphenylacetic acid via homogentisic acid in a Flavobacterium Sp. Arch Microbiol 149:207–213

    Article  Google Scholar 

  • Wang Y, Gu J-D (2006) Degradability of dimethyl terephthalate by Variovorax paradoxus T4 and Sphingomonas yanoikuyae DOS01 isolated from deep-ocean sediments. Ecotoxicology 15:549–557. doi:10.1007/s10646-006-0093-1

    Article  PubMed  Google Scholar 

  • Wei M, Zhang J-J, Liu H, Zhou N-Y (2010) para-Nitrophenol 4-monooxygenase and hydroxyquinol 1,2-dioxygenase catalyze sequential transformation of 4-nitrocatechol in Pseudomonas sp. strain WBC-3. Biodegradation 21:915–921. doi:10.1007/s10532-010-9351-2

    Article  CAS  PubMed  Google Scholar 

  • Winkler M, Lawrence JR, Neu TR (2001) Selective degradation of ibuprofen and clofibric acid in two model river biofilm systems. Water Res 35:3197–3205

    Article  CAS  PubMed  Google Scholar 

  • Wojcieszyńska D, Domaradzka D, Hupert-Kocurek K, Guzik U (2014) Bacterial degradation of naproxen–Undisclosed pollutant in the environment. J Environ Manage 145:157–161

    Article  PubMed  Google Scholar 

  • Xu J, Wu L, Chen W, Jiang P, Chang AC-S (2009) Pharmaceuticals and personal care products (PPCPS), and endocrine disrupting compounds (EDCS) in runoff from a potato field irrigated with treated wastewater in Southern California. J Health Sci 55:306–310

    Article  CAS  Google Scholar 

  • Yilmaz P et al (2014) The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res 42:D643–D648. doi:10.1093/nar/gkt1209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zwiener C, Seeger S, Glauner T, Frimmel FH (2002) Metabolites from the biodegradation of pharmaceutical residues of ibuprofen in biofilm reactors and batch experiments. Anal Bioanal Chem 372:569–575

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

R.W.M. was supported in part by NIH-NIEHS Environmental and Molecular Toxicology training grant ES 07052-27.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert W. Murdoch.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murdoch, R.W., Hay, A.G. The biotransformation of ibuprofen to trihydroxyibuprofen in activated sludge and by Variovorax Ibu-1. Biodegradation 26, 105–113 (2015). https://doi.org/10.1007/s10532-015-9719-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-015-9719-4

Keywords

Navigation