Skip to main content
Log in

Evaluation of 4-bromophenol biodegradation in mixed pollutants system by Arthrobacter chlorophenolicus A6 in an upflow packed bed reactor

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Bromophenol is listed as priority pollutant by U.S. EPA, however, there is no report so far on its removal in mixed pollutants system by any biological reactor operated in continuous mode. Furthermore, bromophenol along with chlorophenol and nitrophenol are usually the major constituents of paper pulp and pesticide industrial effluent. The present study investigated simultaneous biodegradation of these three pollutants with specially emphasis on substrate competition and crossed inhibition by Arthrobacter chlorophenolicus A6 in an upflow packed bed reactor (UPBR). A 23 full factorial design was employed with these pollutants at two different levels by varying their influent concentration in the range of 250–450 mg l−1. Almost complete removal of all these pollutants and 97 % effluent toxicity removal were achieved in the UPBR at a pollutant loading rate of 1707 mg l−1 day−1 or lesser. However, at higher loading rates, the reactor performance deteriorated due to transient accumulation of toxic intermediates. Statistical analysis of the results revealed a strong negative interaction of 4-CP on 4-NP biodegradation. On the other hand, interaction effect between 4-CP and 4-BP was found to be insignificant. Among these three pollutants 4-NP preferentially degraded, however, 4-CP exerted more inhibitory effect on 4-NP biodegradation. This study demonstrated the potential of A. chlorophenolicus A6 for biodegradation of 4-BP in mixed pollutants system by a flow through UPBR system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Ghani NT, Hegazy AK, El-Chaghaby GA, Lima EC (2009) Factorial experimental design for biosorption of iron and zinc using Typha domingensis phytomass. Desalination 249:343–347

    Article  CAS  Google Scholar 

  • Alexander M (1999) Biodegradation and bioremediation, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • American public health association (1998) Standard methods for the examination of water and wastewater, 20th edn. American public health association, Washington, DC

    Google Scholar 

  • Antony J (2003) Design of experiments for engineers and scientist. Butterworth-Heinemann, New York

    Google Scholar 

  • Aranda C, Godoy F, Becerra J, Barra R, Mart´inez M (2003) Aerobic secondary utilization of a non- growth and inhibitory substrate 2,4,6-trichlorophenol by Sphingopyxis chilensis S37 and Sphingopyxis-like strain S32. Biodegradation 14:265–274

    Article  CAS  PubMed  Google Scholar 

  • Bai J, Wen JP, Li HM, Jiang Y (2007) Kinetic modelling of growth and biodegradation of phenol and m-cresol using Alcaligenes faecalis. Process Biochem 42:510–517

    Article  CAS  Google Scholar 

  • Bartels I, Knackmuss HJ, Reineke W (1984) Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl Environ Microbiol 47:500–505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bradford MM (1976) Rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Brasil JL, Ev RR, Milcharek C, Martins LC, Pavan FA, dos Santos Jr AA, Dias SLP, Dupont J, Norena CPZ, Lima EC (2006) Statistical design of experiment as a tool for optimizing the batch condition to Cr(VI) biosorption on Araucaria angustifolia wastes. J Hazard Mater 133B:143–153

    Article  Google Scholar 

  • Bursey JT, Pellizzari ED (1982) Analysis of industrial wastewater for organic pollutants in consent degree survey. Contract No. 68-03-2867, US Environmental Protection Agency, Environmental Research Laboratory, Athens, GA, pp 167

  • Calce N, Nardi E, Petronio BM, Pietroletti M (2002) Adsorption of phenols by paper mill sludge. Environ Pollut 118:315–319

    Article  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT, Zablotowicz RB (1999) Chlorophenol and nitrophenol metabolism by Sphingomonas sp UG30. J Ind Microbiol Biotechnol 23:232–241

    Article  CAS  PubMed  Google Scholar 

  • Crosby DG (1981) Environmental chemistry of pentachlorophenol. Pure Appl Chem 53:1051–1080

    Article  Google Scholar 

  • Eker S, Kargi F (2004) Toxicity and batch biodegradation kinetics of 2,4 dichlorophenol by pure Pseudomonas putida culture. Enzym Microbiol Technol 35:424–428

    Article  Google Scholar 

  • Fava F, Di Gioia D, Marehetti L, Quattroni G (1996) Aerobic dechlorination of low-chlorinated biphenyls by bacterial biofilms in packed-bed batch bioreactors. Appl Microbiol Biotechnol 45:562–568

    Article  CAS  PubMed  Google Scholar 

  • Howe PD, Dobson S, Malcolm HM (2005) 2,4,6-Tribromophenol and other simple brominated phenols. World Health Organization, Geneva

    Google Scholar 

  • Israni SH, Koli SS, Patwardhan AW, Melo JS, Dsouza SF (2002) Phenol degradation in rotating biological contactors. J Chem Technol Biotechnol 77:1050–1057

    Article  CAS  Google Scholar 

  • Jain RK, Dreisbach JH, Spain JC (1994) Biodegradation of p-nitrophenol via 1,2,4-benzenetriol by an Arthrobacter species. Appl Environ Microbiol 60:3030–3032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Langwaldt JH, Puhakka JA (2000) On-site biological remediation of contaminated groundwater: a review. Environ Pollut 107:187–197

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Pang-Tsui Y (1999) Succeed at gas/liquid contacting. Chem Eng Prog 95:23–49

    CAS  Google Scholar 

  • Mathialagan T, Viraraghavan T (2005) Biosorption of pentachlorophenol by fungal biomass from aqueous solutions: a factorial design analysis. Environ Technol 6:571–579

    Article  Google Scholar 

  • Montgomery DC (1996) Design and analysis of experiments, vol 259. Wiley, New York

    Google Scholar 

  • Montgomery DC (2004) The 2K factorial design: design and analysis of experiments, 6th edn. Wiley, Hoboken, p 642

    Google Scholar 

  • Nejad SJ, Abolghasemi H, Moonsavian MA, Golzary A, Maragheh MG (2010) Fractional factorial design for the optimization of hydrothermal synthesis of lanthanum oxide nano-particles under supercritical water condition. J Supercrit Fluids 52:292–297

    Article  Google Scholar 

  • Nomani AA, Ajmal M, Ahmad S (1996) Gas chromatography mass spectrometric analysis of four polluted river waters for phenolic and organic compounds. Environ Monit Assess 40:1–9

    Article  CAS  PubMed  Google Scholar 

  • Nordin K, Unell M, Jansson JK (2005) Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol 71:6538–6544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ponnusami V, Krithika V, Madhuram R, Srivastava SN (2007) Biosorption of reactive dye using acid treated rice husk: factorial design analysis. J Hazard Mater 142:397–403

    Article  CAS  PubMed  Google Scholar 

  • Quan X, Shi H, Zang Y, Wang J, Qian Y (2004) Biodegradation of 2,4 dichlorophenol and phenol in an airlift inner loop bioreactor immobilized with Achromobacter species. J Sep Purif Technol 34:97–103

    Article  CAS  Google Scholar 

  • Ra JS, Oh SY, Lee BC, Kim SD (2008) The effect of suspended particles coated by humic acid on the toxicity of pharmaceuticals, estrogens, and phenolic compounds. Environ Int 34:184–192

    Article  CAS  PubMed  Google Scholar 

  • Reardon KF, Mosteller DC, Rogers JDB (2000) Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F1. Biotechnol Bioeng 69:385–400

    Article  CAS  PubMed  Google Scholar 

  • Sahinkaya E, Dilek FB (2006) Effect of biogenic substrate concentration on 4-chlorophenol degradation kinetics in sequencing batch reactors with instantaneous feed. J Hazard Mater 137:282–287

    Article  CAS  PubMed  Google Scholar 

  • Sahoo NK, Pakshirajan K, Ghosh PK (2011a) Biodegradation kinetics of parabromophenol by Arthrobacter chlorophenolicus A6. Appl Biochem Biotechnol 165:1587–1596

    Article  CAS  PubMed  Google Scholar 

  • Sahoo NK, Pakshirajan K, Ghosh PK (2011b) Biodegradation of para-nitrophenol using Arthrobacter chlorophenolicus A6 in a novel upflow packed bed reactor. J Hazard Mater 190:729–737

    Article  CAS  PubMed  Google Scholar 

  • Sahoo NK, Pakshirajan K, Ghosh PK, Ghosh A (2011c) Biodegradation of 4-chlorophenol by Arthrobacter chlorophenolicus A6: effect of culture conditions and degradation kinetics. Biodegradation 22:275–286

    Article  CAS  PubMed  Google Scholar 

  • Sahoo NK, Pakshirajan K, Ghosh PK (2014) Biodegradation of 4-bromophenol by Arthrobacter chlorophenolicus A6 in batch shake flasks and in a continuously operated packed bed reactor. Biodegradation 25:265–276

    Article  CAS  PubMed  Google Scholar 

  • Salkinoja-Salonen MS (1990) Biochemistry and ecology of the clean-up of pentachlorophenol from contaminated soils. fifth colloquium on pulp and paper mill effluents. Sato K (1983) Effect of a pesticide, pentachlorophenol (PCP) on soil microflora. Plant Soil 75:417–426

    Google Scholar 

  • Silver RS, Mateles RI (1969) Control of mixed-substrate utilization in continuous cultures of Escherichia coli. J Bacteriol 97:535–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Spain JC (1995) Biodegradation of nitroaromatic compounds. Ann Rev Microbiol 49:523–555

    Article  CAS  Google Scholar 

  • Stanlake GJ, Finn RK (1982) Isolation and characterization of a penta chloro phenol degrading bacterium. Appl Environ Microbiol 44:1421–1427

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suidan MT, Strubler CE, Kao SW, Pfeiffer JT (1983) Treatment of coal gasification wastewater with anaerobic filter technology. J Water Pollut Control Fed 55:1263–1270

    CAS  Google Scholar 

  • Tolosa I, Bayona JM, Albaiges J (1991) Identification and occurrence of brominated and nitrated phenols in estuarine sediments. Mar Pollut Bull 22:603–607

    Article  CAS  Google Scholar 

  • Wong Black JM, Concord V (2006) Treatment of Pesticide Industry Wastes by Taylor & Francis Group. LLC, California, pp 499–544

    Google Scholar 

  • Xing-yu L, Bao-jun W, Cheng-ying J, Ke-xin Z, Drake HL, Shuang-Jiang L (2007) Simultaneous biodegradation of nitrogen-containing aromatic compounds in a sequencing batch bioreactor. J Environ Sci 19:530–535

    Article  Google Scholar 

  • Yan J, Jianping W, Bai J, Daoquan W, Zongding H (2006) Phenol biodegradation by the yeast Candida tropicalis in the presence of m-cresol. Biochem Eng J 29:227–234

    Article  CAS  Google Scholar 

  • Yi XS, Shi WX, Yu SL, Li XH, Sun N, He C (2011) Factorial design applied to flux decline of anionic polyacrylamide removal from water by modified polyvinylidene fluoride ultrafiltration membranes. Desalination 274:7–12

    Article  CAS  Google Scholar 

  • Zheng Y, Liu D, Liu Shiwang Xu, Shangying Yuan Y, Li Xiong (2009) Kinetics and mechanisms of p-nitrophenol biodegradation by Pseudomonas aeruginosa HS-D 38. J Environ Sci 21:1194–1199

    Article  CAS  Google Scholar 

  • Zilouei H, Guieysse B, Mattiasson B (2006) Biological degradation of chlorophenols in packed-bed bioreactors using mixed bacterial consortia. Process Biochem 41:1083–1108

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Centre for the Environment, Indian Institute of Technology Guwahati, India, for providing the necessary facility for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naresh Kumar Sahoo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahoo, N.K., Pakshirajan, K. & Ghosh, P.K. Evaluation of 4-bromophenol biodegradation in mixed pollutants system by Arthrobacter chlorophenolicus A6 in an upflow packed bed reactor. Biodegradation 25, 705–718 (2014). https://doi.org/10.1007/s10532-014-9693-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-014-9693-2

Keywords

Navigation