Skip to main content
Log in

Reactivation of effluent granular sludge from a high-rate Anammox reactor after storage

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

In this study, effluent sludge from a high-rate Anammox reactor was used to re-start new Anammox reactors for the reactivation of Anammox granular sludge. Different start-up strategies were evaluated in six upflow anaerobic sludge blanket (UASB) reactors (R1–R6) for their effect on nitrogen removal performance. Maximal nitrogen removal rates (NRRs) greater than 20 kg N/m3/day were obtained in reactors R3–R5, which were seeded with mixed Anammox sludge previously stored for approximately 6 months and 1 month. A modified Boltzmann model describing the evolution of the NRR fit the experimental data well. An amount of sludge added to the UASB reactor or decreasing the loading rate proved effective in relieving the substrate inhibition and increasing the NRR. The modified Stover–Kincannon model fit the nitrogen removal data in the Anammox reactors well, and the simulation results showed that the Anammox process has great nitrogen removal potential. The observed inhibition in the Anammox reactors may have been caused by high levels of free ammonia. The sludge used to seed the reactors did not settle well; sludge flotation was observed even after the reactors were operated for a long time at a floating upward velocity (Fs) of greater than 100 m/h. The settling sludge, however, exhibited good settling properties. Scanning electron microscopy showed that the Anammox granules consisted mainly of spherical and elliptical bacteria with abundant filaments on their surface. Hollows in the granules were also present, which may have contributed to sludge floatation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABF:

Anaerobic biological filter

Anammox:

Anaerobic ammonium oxidation

ANMR:

Anammox non-woven membrane reactor

CSTR:

Continuously stirred tank reactor

EPS:

Exocellular polymeric substance

FA:

Free ammonia

Fs :

Floating upward velocity

HRT:

Hydraulic retention time

IAN:

Influent ammonium nitrogen

INN:

Influent nitrite nitrogen

NLR:

Nitrogen loading rate

NRR:

Nitrogen removal rate

PR:

Parent reactor

R 2 :

Correlation coefficient

SAA:

Specific Anammox activity

SBR:

Sequencing batch reactor

SD:

Standard deviation

SEM:

Scanning electron microscopy

SS:

Suspended solids

SVI30 :

30-min sludge volume index

SVI5 :

5-min sludge volume index

TEM:

Transmission electron microscopy

UAGSB:

Upflow Anammox granular sludge bed

UASB:

Upflow anaerobic sludge blanket

UBF:

Upflow biofilter

Vs :

Settling velocity

VSS:

Volatile suspended solids

References

  • Abma WR, Schultz CE, Mulder JW, van der Star WRL, Strous M, Tokutomi T, van Loosdrecht MCM (2007) Full-scale granular sludge Anammox process. Water Sci Technol 55(8–9):27–33

    PubMed  CAS  Google Scholar 

  • Ahn YH (2006) Sustainable nitrogen elimination biotechnologies: a review. Process Biochem 41(8):1709–1721

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (AEF) (2005) Standard methods for the examination of water and wastewater, 21st ed. APHA, Washington

  • Anthonisen AC, Loehr RC, Prakasam TBS, Srinath EG (1976) Inhibition of nitrification by ammonia and nitrous acid. J Water Pollut Control Fed 48(5):835–852

    PubMed  CAS  Google Scholar 

  • Araujo JC, Campos AC, Correa MM, Silva EC, Matte MH, Matte GR, von Sperling M, Chernicharo CAL (2011) Anammox bacteria enrichment and characterization from municipal activated sludge. Water Sci Technol 64(7):1428–1434

    Article  PubMed  CAS  Google Scholar 

  • Arrojo B, Mosquera-Corral A, Campos JL, Méndez R (2006) Effects of mechanical stress on Anammox granules in a sequencing batch reactor (SBR). J Biotechnol 123(4):453–463

    Article  PubMed  CAS  Google Scholar 

  • Bagchi S, Biswas R, Nandy T (2010) Start-up and stabilization of an Anammox process from a non-acclimatized sludge in CSTR. J Ind Microbiol Biotechnol 37(9):943–952

    Article  PubMed  CAS  Google Scholar 

  • Baloch MI, Akunna JC, Kierans M, Collier PJ (2008) Structural analysis of anaerobic granules in a phase separated reactor by electron microscopy. Bioresour Technol 99(5):922–929

    Article  PubMed  CAS  Google Scholar 

  • Chamchoi N, Nitisoravut S (2007) ANAMMOX enrichment from different conventional sludges. Chemosphere 66(11):2225–2232

    Article  PubMed  CAS  Google Scholar 

  • Chen JW, Ji QX, Zheng P, Chen TT, Wang CH, Mahmood Q (2010) Floatation and control of granular sludge in a high-rate anammox reactor. Water Res 44(11):3321–3328

    Article  PubMed  CAS  Google Scholar 

  • Dapena-Mora A, Fernández I, Campos JL, Mosquera-Corral A, Méndez R, Jetten MSM (2007) Evaluation of activity and inhibition effects on Anammox process by batch tests based on the nitrogen gas production. Enzyme Microb Technol 40(4):859–865

    Article  CAS  Google Scholar 

  • Date Y, Isaka K, Ikuta H, Sumino T, Kaneko N, Yoshie S, Tsuneda S, Inamori Y (2009) Microbial diversity of Anammox bacteria enriched from different types of seed sludge in an anaerobic continues-feeding cultivation reactor. J Biosci Bioeng 107(3):281–286

    Article  PubMed  CAS  Google Scholar 

  • Egli K, Fanger U, Alvarez PJJ, Siegrist H, van der Meer JR, Zehnder AJB (2001) Enrichment and characterization of an Anammox bacterium from a rotating biological contactor treating ammonium-rich leachate. Arch Microbiol 175:198–207

    Article  PubMed  CAS  Google Scholar 

  • Fernández I, Dosta J, Fajardo C, Campos JL, Mosquera-Corral A, Méndez R (2012) Short- and long-term effects of ammonium and nitrite on the Anammox process. J Environ Manag 95:170–174

    Google Scholar 

  • Gao Y, Liu Z, Liu F, Furukawa K (2011) Mechanical shear contributes to granule formation resulting in quick start-up and stability of a hybrid Anammox reactor. Biodegradation. doi:10.1007/s10532-011-9515-8

  • Isaka K, Sumino T, Tsuneda S (2007) High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions. J Biosci Bioeng 103(5):486–490

    Article  PubMed  CAS  Google Scholar 

  • Jetten MSM, Strous M, van de Pas-Schoonen KT, Schalk J, van Dongen UGJM, van de Graaf AA, Logemann S, Muyzer G, van Loosdrecht MCM, Kuenen JG (1998) The anaerobic oxidation of ammonium. FEMS Microbiol Rev 22(5):421–437

    Article  PubMed  CAS  Google Scholar 

  • Jetten MSM, Cirpus I, Kartal B, van Niftrik L, van de Pas-Schoonen KT, Sliekers O, Haaijer S, van der Star W, Schmid M, van de Vossenberg J, Schmidt I, Harhangi H, van Loosdrecht M, Gijs Kuenen J, Op den Camp H, Strous M (2005) 1994–2004: 10 years of research on the anaerobic oxidation of ammonium. Biochem Soc Tran 33(1):119–123

    Article  CAS  Google Scholar 

  • Jin RC, Zheng P (2009) Kinetics of nitrogen removal in high rate Anammox upflow filter. J Hazard Mater 170(2–3):652–656

    Article  PubMed  CAS  Google Scholar 

  • Jin RC, Zheng P, Hu AH, Mahmood Q, Hu BL, Jilani G (2008) Performance comparison of two Anammox reactors: SBR and UBF. Chem Eng J 138(1–3):224–230

    Article  CAS  Google Scholar 

  • Joss A, Salzgeber D, Eugster J, Kőnig R, Rottermann K, Burger S, Fabijan P, Leumann S, Mohn J, Siegrist H (2009) Full-scale nitrogen removal from digester liquid with partial nitritation and Anammox in one SBR. Environ Sci Technol 43(14):5301–5306

    Article  PubMed  CAS  Google Scholar 

  • Jung JY, Kang SH, Chung YC, Ahn DH (2007) Factors affecting the activity of Anammox bacteria during start up in the continuous culture reactor. Water Sci Technol 55(1):459–468

    Article  PubMed  CAS  Google Scholar 

  • Li HS, Zhou SQ, Ma WH, Huang GT, Xu B (2012) Fast start-up of ANAMMOX reactor: operational strategy and some characteristics as indicators of reactor performance. Desalination 286(1):436–441

    Article  CAS  Google Scholar 

  • López H, Puig S, Ganigué R, Ruscalleda M, Balaguer MD, Colprim J (2008) Start-up and enrichment of a granular Anammox SBR to treat high nitrogen load wastewaters. J Chem Technol Biotechnol 83(3):233–241

    Article  Google Scholar 

  • Ma YG, Hira D, Li ZG, Chen C, Furukawa K (2011) Nitrogen removal performance of a hybrid Anammox reactor. Bioresour Technol 102(12):6650–6656

    Article  PubMed  CAS  Google Scholar 

  • Molinuevo B, García MC, Karakashev D, Angelidaki I (2009) Anammox for ammonia removal from pig manure effluents: effect of organic matter content on process performance. Bioresour Technol 100(7):2171–2175

    Article  PubMed  CAS  Google Scholar 

  • Mulder A, van de Graaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol Ecol 16(3):177–184

    Article  CAS  Google Scholar 

  • Mussati M, Gernaey K, Gani R, Jørgensen SB (2002) Performance analysis of a denitrifying wastewater treatment plant. Clean Technol Environ 4(3):171–182

    CAS  Google Scholar 

  • Ni SQ, Lee PH, Sung S (2010) The kinetics of nitrogen removal and biogas production in an Anammox non-woven membrane reactor. Bioresour Technol 101(15):5767–5773

    Article  PubMed  CAS  Google Scholar 

  • Ni SQ, Gao BY, Wang CC, Lin JG, Sung SH (2011) Fast start-up, performance and microbial community in a pilot-scale Anammox reactor seeded with exotic mature granules. Bioresour Technol 102(3):2448–2454

    Article  PubMed  CAS  Google Scholar 

  • Ni SQ, Sung S, Yue QY, Gao BY (2012) Substrate removal evaluation of granular Anammox process in a pilot-scale upflow anaerobic sludge blanket reactor. Ecol Eng 38(1):30–36

    Article  Google Scholar 

  • Qiao S, Kawakubo Y, Cheng Y, Nishiyama T, Fujii T, Furukawa K (2009) Identification of bacteria coexisting with Anammox bacteria in an upflow column type reactor. Biodegradation 20(1):117–124

    Article  PubMed  CAS  Google Scholar 

  • Quan LM, Khanh DP, Hira D, Fujii T, Furukawa K (2011) Reject water treatment by improvement of whole cell Anammox entrapment using polyvinyl alcohol/alginate gel. Biodegradation 22:1155–1167

    Article  PubMed  CAS  Google Scholar 

  • Schmidt I, Sliekers O, Schmid M, Bock E, Fuerst J, Kuenen JG, Jetten MSM, Strous M (2003) New concepts of microbial treatment processes for the nitrogen removal in wastewater. FEMS Microbiol Rev 27(4):481–492

    Article  PubMed  CAS  Google Scholar 

  • Shen LD, Hu AH, Jin RC, Cheng DQ, Zheng P, Xu XY, Hu BL (2012) Enrichment of Anammox bacteria from three sludge sources for the startup of monosodium glutamate industrial wastewater treatment system. J Hazard Mater 199–200:193–199

    Article  Google Scholar 

  • Sliekers AO, Third KA, Abma W, Kuenen JG, Jetten MSM (2003) CANON and Anammox in a gas-lift reactor. FEMS Microbiol Lett 218(2):339–344

    Article  PubMed  CAS  Google Scholar 

  • Strous M, Heijnen JJ, Kuenen JG, Jetten MSM (1998) The sequencing batch reactor as a powerful tool to study very slowly growing micro-organisms. Appl Microbiol Biotechnol 50(5):589–596

    Article  CAS  Google Scholar 

  • Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999a) Missing lithotroph identified as new planctomycete. Nature 400(6743):446–449

    Article  PubMed  CAS  Google Scholar 

  • Strous M, Kuenen JG, Jetten M (1999b) Key physiology of anaerobic ammonium oxidation. Appl Environ Microbiol 65(7):3248–3250

    PubMed  CAS  Google Scholar 

  • Tang CJ, Zheng P, Mahmood Q (2009a) The shear force amendments on slugging behavior in upflow Anammox sludge bed reactor. Sep Purif Technol 69(3):262–268

    Article  CAS  Google Scholar 

  • Tang CJ, Zheng P, Mahmood Q, Chen JW (2009b) Start-up and inhibition analysis of the Anammox process seeded with anaerobic granular sludge. J Ind Microbiol Biotechnol 36(8):1093–1100

    Article  PubMed  CAS  Google Scholar 

  • Tang CJ, Zheng P, Zhang L, Chen JW, Mahmood Q, Chen XG, Hu BL, Wang CH, Yu Y (2010a) Enrichment features of Anammox consortia from methanogenic granules loaded with high organic and methanol contents. Chemosphere 79(6):613–619

    Article  PubMed  CAS  Google Scholar 

  • Tang CJ, Zheng P, Mahmood Q, Chen JW (2010b) Effect of substrate concentration on stability of Anammox biofilm reactors. J Cent South Univ Technol 17(1):79–84

    Article  CAS  Google Scholar 

  • Tang CJ, Zheng P, Wang CH, Mahmood Q, Zhang JQ, Chen XG, Zhang L, Chen JW (2011a) Performance of high-loaded ANAMMOX UASB reactors containing granular sludge. Water Res 45(1):135–144

    Article  PubMed  CAS  Google Scholar 

  • Tang CJ, Zheng P, Chen TT, Zhang JQ, Mahmood Q, Ding S, Chen XG, Chen JW, Wu DT (2011b) Enhanced nitrogen removal from pharmaceutical wastewater using SBA-ANAMMOX process. Water Res 45(1):201–210

    Article  PubMed  CAS  Google Scholar 

  • Trigo C, Campos JL, Garrido JM, Méndez R (2006) Start-up of the Anammox process in a membrane bioreactor. J Biotechnol 126(4):475–487

    Article  PubMed  CAS  Google Scholar 

  • Tsushima I, Ogasawara Y, Kindaichi T, Satoh H, Okabe S (2007) Development of high-rate anaerobic ammonium-oxidizing (Anammox) biofilm reactors. Water Res 41(8):1623–1634

    Article  PubMed  CAS  Google Scholar 

  • van de Graaf AA, De Bruijn P, Robertson LA, Jetten MSM, Kuenen JG (1996) Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor. Microbiology 142(8):2187–2196

    Article  Google Scholar 

  • van der Star WRL, Abma WR, Bolmmers D, Mulder JW, Tokutomi T, Strous M, Picioreanu C, van Loosdrecht MCM (2007) Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale Anammox reactor in Rotterdam. Water Res 41(18):4149–4163

    Article  PubMed  Google Scholar 

  • van der Star WRL, Miclea AI, van Dongen UGJM (2008) The membrane bioreactor: a novel tool to grow Anammox bacteria as free cells. Biotechnol Bioeng 101(2):286–294

    Article  PubMed  Google Scholar 

  • van Hulle SWH, Vandeweyer HJP, Meesschaert BD, Vanrolleghem PA, Dejans P, Dumoulin A (2010) Engineering aspects and practical application of autotrophic nitrogen removal from nitrogen rich streams. Chem Eng J 162(1):1–20

    Article  Google Scholar 

  • van Niftrik LA, Fuerst JA, Damsté JSS, Kuenen JG, Jetten MSM, Strous M (2004) The anammoxosome: an intracytoplasmic compartment in Anammox bacteria. FEMS Microbiol Lett 233(1):7–13

    Article  PubMed  Google Scholar 

  • Waki M, Tokutomi T, Yokoyama H, Tanaka Y (2007) Nitrogen removal from animal waste treatment water by Anammox enrichment. Bioresour Technol 98(14):2775–2780

    Article  PubMed  CAS  Google Scholar 

  • Zekker I, Rikmann E, Tenno T, Lemmiksoo V, Menert A, Loorits L, Vabamäe P, Tomingas M, Tenno T (2012) Anammox enrichment from reject water on blank biofilm carriers and carriers containing nitrifying biomass: operation of two moving bed biofilm reactors (MBBR). Biodegradation. doi:10.1007/s10532-011-9532-7

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 50808060 & No. 51078121), the Zhejiang Provincial Natural Science Foundation of China (No. Y5090072) and the Science and Technology Development Program of Hangzhou (No. 20091133B06). The authors express gratitude to Dr. Ting–Ting Chen from the Department of Environmental Engineering at Zhejiang University for her help in granule diameter analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren Cun Jin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, G.F., Jin, R.C. Reactivation of effluent granular sludge from a high-rate Anammox reactor after storage. Biodegradation 24, 13–32 (2013). https://doi.org/10.1007/s10532-012-9554-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-012-9554-9

Keywords

Navigation