Skip to main content
Log in

Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

In this work, two novel iron oxidizing bacteria (IOB), namely Gordonia sp. MZ-89 and Enterobacter sp. M01101, were isolated from sewage treatment plants and identified by biochemical and molecular methods. Then, microbially influenced corrosion (MIC) of carbon steel in the presence of these bacteria was investigated. The electrochemical techniques such as potentiodynamic polarization measurements and electrochemical impedance spectroscopy (EIS) were used to measure the corrosion rate and observe the corrosion mechanism. The results showed that the existence of these microorganisms decreased the corrosion potential and enhanced the corrosion rate. Scanning electron microscopy (SEM) images revealed the ground boundary attacks and pitting on carbon steel samples in the presence of these bacteria after polarization. Corrosion scales were identified with X-ray diffraction (XRD). It was demonstrated that these bacteria can greatly affect the crystalline phase of corrosion products that also confirmed by SEM results. It was inferred that these bacteria were responsible for the corrosion of carbon steel, especially in the form of localized corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Angell P, White DC (1995) Is metabolic activity by biofilms with sulfate-reducing bacterial consortia essential for long-term propagation of pitting corrosion of stainless steel? J Ind Microbiol 115:329–332. doi:10.1016/S0010-938X(99)00116-X

    Article  Google Scholar 

  • Atlas RM (1993) Handbook of microbiological media. CRC Press, Boca Raton

    Google Scholar 

  • Chen YC, Lee CM, Yen SK, Chyou SD (2007) The effect of denitrifying Fe-oxidizing bacteria TPH-7 on corrosion inhibition of sodium molybdate. Corros Sci 49:3917–3925. doi:10.1016/j.corsci.2007.03.042

    Article  CAS  Google Scholar 

  • Dubiel M, Hsu CH, Chien CC, Mansfeld F, Newman DK (2002) Microbial iron respiration can protect steel from corrosion. Appl Environ Microbiol 68:1440–1445. doi:10.1128/AEM.68.3.1440-1445.2002

    Article  PubMed  CAS  Google Scholar 

  • Fonseca ITE, Feio MJ, Lino AR, Reis MA, Rainha VL (1998) The influence of the media on the corrosion of mild steel by Desulfovibrio desulfuricans bacteria: an electrochemical study. Electrochim Acta 43:213–222. doi:10.1016/S0013-4686(97)00227-2

    Article  CAS  Google Scholar 

  • Kim KK, Lee CS, Kroppenstedt RM, Stackebrandt E, Lee ST (2003) Gordonia sihwensis sp. nov., a novel nitrate-reducing bacterium isolated from a wastewater-treatment bioreactor. Int J Syst Evol Microbiol 53:1427–1433. doi:10.1099/ijs.0.02224-0

    Article  PubMed  CAS  Google Scholar 

  • Kissi M, Bouklah M, Benkaddour M (2006) Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution. Appl Surf Sci 252:4190–4197. doi:10.1016/j.apsusc.2005.06.035

    Article  CAS  Google Scholar 

  • Lee AK, Newman DK (2003) Microbial iron respiration: impacts on corrosion processes. Appl Microbiol Biotechnol 62:134–139

    Article  PubMed  CAS  Google Scholar 

  • Mansfeld F, Little B (1991) A technical review of electrochemical techniques applied to microbiologically influenced corrosion. Corros Sci 32:247–272. doi:10.1016/0010-938X(91)90072-W

    Article  CAS  Google Scholar 

  • Miranda E, Bethencourt M, Botana FJ, Cano MJ, Sanchez-Amaya JM, Corzo A, de Lomas, JG, Fardeau ML, Ollivier B (2006) Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator. Corros Sci 48:2417–2431. doi:10.1016/j.corsci.2005.09.005

    Google Scholar 

  • Morgan E (1993) Chemometrics: experimental design. Analytical chemistry by open learning. Wiley, New York

    Google Scholar 

  • Nyikos L, Pajkossy T (1985) Electrochemical and in situ Mössbauer studies of tin passivation. Electrochim Acta 30:529–533. doi:10.1016/0013-4686(85)80043-8

    Article  Google Scholar 

  • Olesen BH, Avci R, Lewandowski Z (2000) Manganese dioxide as a potential cathodic reactant in corrosion of stainless steels. Corros Sci 42:211–227. doi:10.1016/S0010-938X(99)00071-2

    Article  CAS  Google Scholar 

  • Oyasan N, Nazir H (2010) The influence of Pseudomonas aeruginosa on corrosion behavior of nickel-cobalt alloy. Commun Fac Sci Univ Ankara Ser B 56:1–9

    Google Scholar 

  • Pauwels B, Verstraete W (2006) The treatment of hospital wastewater: an appraisal. J Water Health 04:405–416. doi:10.2166/wh.2006.025

    CAS  Google Scholar 

  • Rajasekar A, Babu TG, Pandian SK, Maruthamuthu S, Palaniswamy N, Rajendran A (2007) Biodegradation and corrosion behavior of manganese oxidizer Bacillus cereus ACE4 in diesel transporting pipeline. Corros Sci 49:2694–2710. doi:10.1016/j.corsci.2006.12.004

    Article  CAS  Google Scholar 

  • Rao TS, Kora AJ, Anupkumar B, Narasimhan SV, Feser R (2005) Pitting corrosion of titanium by a freshwater strain of sulphate reducing bacteria (Desulfovibrio vulgaris). Corros Sci 47:1071–1084. doi:10.1016/j.corsci.2004.07.025

    Article  CAS  Google Scholar 

  • Seneath PHA, Mair NS, Sharpe ME, Holt JG (1986) Bergey’s manual of systematic bacteriology, 9th edn. Williams and Wilkins, Baltimore

    Google Scholar 

  • Shi X, Avci R, Geiser M, Lewandowski Z (2003) Comparative study in chemistry of microbially and electrochemically induced pitting of 316L stainless steel. Corros Sci 45:2577–2595. doi:10.1016/S0010-938X(03)00079-9

    Article  CAS  Google Scholar 

  • Starosvetsky D, Armon R, Yahalom J, Starosvetsky J (2001) Pitting corrosion of carbon steel caused by iron bacteria. Int Biodeter Biodegrad 47:79–87. doi:10.1016/S0964-8305(99)00081-5

    Article  CAS  Google Scholar 

  • Starosvetsky J, Starosvetsky D, Pokroy B, Hilel T, Armon R (2008) Electrochemical behaviour of stainless steels in media containing iron-oxidizing bacteria (IOB) by corrosion process modeling. Corros Sci 50:540–547. doi:10.1016/j.corsci.2007.07.008

    Article  CAS  Google Scholar 

  • Teng F, Guan YT, Zhu WP (2008) Effect of biofilm on cast iron pipe corrosion in drinking water distribution system: corrosion scales characterization and microbial community structure investigation. Corros Sci 50:2816–2823. doi:10.1016/j.corsci.2008.07.008

    Article  CAS  Google Scholar 

  • Unas EJ, Ramanauskas R, Lugauskas A, Samulevicien M, Leinartas K (2005) Microbially influenced corrosion acceleration and inhibition. EIS study of Zn and Al subjected for two years to influence of Penicillium frequentans, Aspergillus niger and Bacillus mycoides. Electrochem Commun 7:305–311. doi:10.1016/j.elecom.2005.01.012

    Article  Google Scholar 

  • Valcarce MB, de Sanchez SR, Vazquez M (2006) Brass dezincification in a tap water bacterial suspension. Electrochim Acta 51:3736–3742. doi:10.1016/j.electacta.2005.10.034

    Article  CAS  Google Scholar 

  • Xu C, Zhang Y, Cheng G, Zhu W (2007) Localized corrosion behavior of 316L stainless steel in the presence of sulfate-reducing and iron-oxidizing bacteria. Mater Sci Eng A 443:235–241. doi:10.1016/j.msea.2006.08.110

    Article  Google Scholar 

  • Yassin AF, Shen FT, Hupfer H, Arun AB, Lai WA, Rekha PD, Young CC (2007) Gordonia malaquae sp. nov., isolated from sludge of a wastewater treatment plant. Int J Syst Evol Microbiol 57:1065–1068. doi:10.1099/ijs.0.64893-0

    Article  PubMed  CAS  Google Scholar 

  • Yuan SJ, Pehkonen SO (2007) Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study. Colloid Surf B Biointerfaces 59:87–99. doi:10.1016/j.colsurfb.2007.04.020

    Article  CAS  Google Scholar 

  • Yuan SJ, Choong AMF, Pehkonen SO (2009) AFM study of microbial colonization and its deleterious effect on 304 stainless steel by Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans in simulated seawater. Corros Sci 51:1372–1385. doi:10.1016/j.corsci.2009.03.037

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Mr. Kuhi (Salimi Waste Management Co. president, Tabriz, Iran) and express our gratitude to Motahare Asadi (Microbiology Lab, Tabriz University) for her kind assistance in microbiological and molecular instructions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ashassi-Sorkhabi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ashassi-Sorkhabi, H., Moradi-Haghighi, M., Zarrini, G. et al. Corrosion behavior of carbon steel in the presence of two novel iron-oxidizing bacteria isolated from sewage treatment plants. Biodegradation 23, 69–79 (2012). https://doi.org/10.1007/s10532-011-9487-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-011-9487-8

Keywords

Navigation