Skip to main content
Log in

Biochemical characterization of ethanol-dependent reduction of furfural by alcohol dehydrogenases

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Lignocellulosic biomass is usually converted to hydrolysates, which consist of sugars and sugar derivatives, such as furfural. Before yeast ferments sugars to ethanol, it reduces toxic furfural to non-inhibitory furfuryl alcohol in a prolonged lag phase. Bioreduction of furfural may shorten the lag phase. Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase (FurX) at the expense of ethanol (Li et al. 2011). The mechanism of the ethanol-dependent reduction of furfural by FurX and three homologous alcohol dehydrogenases was investigated. The reduction consisted of two individual reactions: ethanol-dependent reduction of NAD+ to NADH and then NADH-dependent reduction of furfural to furfuryl alcohol. The kinetic parameters of the coupled reaction and the individual reactions were determined for the four enzymes. The data indicated that limited NADH was released in the coupled reaction. The enzymes had high affinities for NADH (e.g., K d of 0.043 μM for the FurX-NADH complex) and relatively low affinities for NAD+ (e.g., K d of 87 μM for FurX-NAD+). The kinetic data suggest that the four enzymes are efficient “furfural reductases” with either ethanol or NADH as the reducing power. The standard free energy change (ΔG°′) for ethanol-dependent reduction of furfural was determined to be −1.1 kJ mol−1. The physiological benefit for ethanol-dependent reduction of furfural is likely to replace toxic and recalcitrant furfural with less toxic and more biodegradable acetaldehyde.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Antal MJ, Leesomboon T, Mok WS, Richards GN (1991) Mechanism of formation of 2-furaldehyde from d-xylose. Carbohydr Res 217:71–85

    Article  CAS  Google Scholar 

  • Boopathy R, Bokang H, Daniels L (1993) Biotransformation of furfural and 5-hydroxymethyl furfural by enteric bacteria. J Ind Microbiol Biotechnol 11:147–150

    CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • de Smidt O, du Preez JC, Albertyn J (2008) The alcohol dehydrogenases of Saccharomyces cerevisiae: a comprehensive review. FEMS Yeast Res 8:967–978

    Article  PubMed  Google Scholar 

  • Ellis TG, Eliosov B (2004) Use of extant kinetic parameters to predict effluent concentrations of specific organic compounds at full-scale facilities. Water Environ Res 76:444–452

    Article  PubMed  CAS  Google Scholar 

  • Ganzhorn AJ, Green DW, Hershey AD, Gould RM, Plapp BV (1987) Kinetic characterization of yeast alcohol dehydrogenases. Amino acid residue 294 and substrate specificity. J Biol Chem 262:3754–3761

    PubMed  CAS  Google Scholar 

  • Gutierrez T, Ingram LO, Preston JF (2006) Purification and characterization of a furfural reductase (FFR) from Escherichia coli strain LYO1: an enzyme important in the detoxification of furfural during ethanol production. J Biotechnol 121:154–164

    Article  PubMed  CAS  Google Scholar 

  • Heer D, Sauer U (2008) Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotech 1:497–506

    Article  CAS  Google Scholar 

  • Hoydonckx HE, Van Rhijn WM, Van Rhijn W, De Vos DE, Jacobs PA (2007) “Furfural and derivatives” in Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  • Karlsson A, El-Ahmad M, Johansson K, Shafqat J, Jörnvall H, Eklund H, Ramaswamy S (2003) Tetrameric NAD-dependent alcohol dehydrogenase. Chem Biol Interact 143–144:239–245

    Article  PubMed  Google Scholar 

  • Laadan B, Almeida JR, Rådström P, Hahn-Hägerdal B, Gorwa-Grauslund M (2008) Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae. Yeast 25:191–198

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H et al (2007) Clustal W and clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Larroy C, Pares X, Biosca JA (2002a) Characterization of a Saccharomyces cerevisiae NADP(H)-dependent alcohol dehydrogenase (ADHVII), a member of the cinnamyl alcohol dehydrogenase family. Eur J Biochem 269:5738–5745

    Article  PubMed  CAS  Google Scholar 

  • Larroy C, Fernandez MR, Gonzalez E, Pares X, Biosca JA (2002b) Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction. Biochem J 361:163–172

    Article  PubMed  CAS  Google Scholar 

  • Levin I, Meiri G, Peretz M, Burstein Y, Frolow F (2004) The ternary complex of Pseudomonas aeruginosa alcohol dehydrogenase with NADH and ethylene glycol. Protein Sci 13:1547–1556

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Lam LKM, Xun L (2011) Cupriavidus necator JMP134 rapidly reduces furfural with a Zn-dependent alcohol dehydrogenase. Biodegradation. doi:10.1007/s10532-011-9476-y

  • Liu ZL, Moon J (2009) A novel NADPH-dependent aldehyde reductase gene from Saccharomyces cerevisiae NRRL Y-12632 involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Gene 446:1–10

    Article  PubMed  CAS  Google Scholar 

  • Liu ZL, Moon J, Andersh AJ, Slininger PJ, Weber S (2008) Multiple gene mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and HMF by ethanologenic yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 81:743–753

    Article  PubMed  CAS  Google Scholar 

  • Marchand P, Rosenfeld E, Erable B, Maugard T, Lamare T, Goubet I (2008) Coupled oxidation–reduction of butanol–hexanal by resting Rhodococcus erythropolis NCIMB 13064 cells in liquid and gas phases. Enz Microb Technol 43:423–430

    Article  CAS  Google Scholar 

  • Miller EN, Jarboe LR, Yomano LP, York SW, Shanmugam KT, Ingram LO (2009) Silencing of NADPH-dependent oxidoreductase genes (yqhD and dkgA) in furfural-resistant ethanologenic Escherichia coli. Appl Environ Microbiol 75:4315–4323

    Article  PubMed  CAS  Google Scholar 

  • Modig T, Lidén G, Taherzadeh MJ (2002) Inhibition effects of furfural on alcohol dehydrogenase, aldehyde dehydrogenase and pyruvate dehydrogenase. Biochem J 363:769–776

    Article  PubMed  CAS  Google Scholar 

  • O’Brien PJ, Siraki AG, Shangari N (2005) Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol 35:609–662

    Article  PubMed  Google Scholar 

  • Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Schenkels P, Duine JA (2000) Nicotinoprotein (NADH-containing) alcohol dehydrogenase from Rhodococcus erythropolis DSM 1069: an efficient catalyst for coenzyme-independent oxidation of a broad spectrum of alcohols and the interconversion of alcohols and aldehydes. Microbiology 146:775–785

    PubMed  CAS  Google Scholar 

  • Shafqat J, Höög JO, Hjelmqvist L, Oppermann UC, Ibáñez C, Jörnvall H (1999) An ethanol-inducible MDR ethanol dehydrogenase/acetaldehyde reductase in Escherichia coli: structural and enzymatic relationships to the eukaryotic protein forms. Eur J Biochem 263:305–311

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Jungermann K, Decker K (1977) Energy conservation in chemotropic anaerobic bacteria. Bacteriol Rev 41:100–180

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Q. Li was partially funded by a scholarship from the Ministry of Education of the People’s Republic of China. L. K. M. Lam was partially funded by College of Science, Washington State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luying Xun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Q., Metthew Lam, L.K. & Xun, L. Biochemical characterization of ethanol-dependent reduction of furfural by alcohol dehydrogenases. Biodegradation 22, 1227–1237 (2011). https://doi.org/10.1007/s10532-011-9477-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-011-9477-x

Keywords

Navigation