Skip to main content
Log in

Biodegradation of diphenylarsinic acid to arsenic acid by novel soil bacteria isolated from contaminated soil

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Microorganisms capable of degrading diphenylarsinic acid (DPAA) were enriched from contaminated soil using the soil-charcoal perfusion method. Two novel bacterial strains, L2406 and L2413, that can degrade DPAA in a mineral salt medium supplemented with DPAA as the sole carbon source were isolated. Based on comparative morphology, physiology, and comparison of the 16S rRNA gene sequences, both were presumed to be species closely related to Ensifer adhaerens. As the metabolites, phenylarsonic acid (PAA) was determined by liquid chromatography-mass spectrometry analysis as well as three unknown peaks all of whose molecular weights were estimated to be 278. The increase of m/z = 16 from DPAA in the unknowns suggests monohydroxylation of DPAA at the 2-, 3- and 4-positions. The ability of strains L2406 and L2413 to degrade DPAA was suppressed in iron insufficient conditions, e.g. less than 7.2 μM iron in the culture medium. These facts strongly suggest the following hypothesis: Monooxygenase works at the initial degradation step of DPAA degradation by the isolates; and direct hydrolysis from DPAA to PAA is not likely to occur. In addition, release of arsenic acid from PAA by strain L2406 was confirmed by liquid chromatography-inductively coupled plasma mass spectrometry. From these results, strain L2406 was considered to be capable of degrading DPAA to arsenic acid via PAA when DPAA was supplied as the sole carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arao T, Maejima Y, Baba K (2009) Uptake of aromatic arsenicals from soil contaminated with diphenylarsinic acid by rice. Environ Sci Technol 43:1097–1101. doi:10.1021/es8023397

    Article  CAS  PubMed  Google Scholar 

  • Audus LJ (1946) A new soil perfusion apparatus. Nature 158:419. doi:10.1038/158419a0

    Article  CAS  Google Scholar 

  • Baba K, Arao T, Maejima Y, Watanabe E, Eun H, Ishizaka M (2008) Arsenic speciation in rice and soil containing related compounds of chemical warfare agents. Anal Chem 80:5768–5775. doi:10.1021/ac8002984

    Article  CAS  PubMed  Google Scholar 

  • Daus B, Mattusch J, Wennrich R, Weiss H (2008) Analytical investigations of phenyl arsenicals in groundwater. Talanta 75:376–379. doi:10.1016/j.talanta.2007.11.024

    Article  CAS  PubMed  Google Scholar 

  • Dinkla IJT, Gabor EM, Janssen DB (2001) Effects of iron limitation on the degradation of toluene by Pseudomonas strains carrying the TOL (pWWO) plasmid. Appl Environ Microbiol 67:3406–3412. doi:10.1128/AEM.67.8.3406-3412.2001

    Article  CAS  PubMed  Google Scholar 

  • Evans PO (1997) Paper 13: destruction of abandoned chemical weapons in China, Bonn International Center for Conversion, Bonn, Germany. (online) http://www.bicc.de/uploads/pdf/publications/papers/paper13/paper13.pdf (10 July, 2009)

  • Glasby GP (1997) Disposal of chemical weapons in the Baltic Sea. Sci Total Environ 206:267–273. doi:10.1016/S0048-9697(97)80015-0

    CAS  PubMed  Google Scholar 

  • Haas R, Schmidt TC, Steinbach K, von Löw E (1998) Chromatographic determination of phenylarsenic compounds. Fresenius J Anal Chem 361:313–318. doi:10.1007/s002160050892

    Article  CAS  Google Scholar 

  • Hanaoka S, Nagasawa E, Nomura K, Yamazawa M, Ishizaki M (2005) Determination of diphenylarsenic compounds related to abandoned chemical warfare agents in environmental samples. Appl Organometal Chem 19:265–275. doi:10.1002/aoc.790

    Article  CAS  Google Scholar 

  • Harada N, Takagi K, Harazono A, Fujii K, Iwasaki A (2006) Isolation and characterization of microorganisms capable of hydrolysing the herbicide mefenacet. Soil Biol Biochem 38:173–179. doi:10.1016/j.soilbio.2005.04.015

    Article  CAS  Google Scholar 

  • Ibaraki Prefecture, Japan (2004) Press release: Diphenylarsinic acid (DPAA) concentration in well water for irrigation in Kamisu town. Available via DIALOG. http://www.shoku.pref.ibaraki.jp/cgi/news/data/doc/114.pdf. Accessed 22 Oct 2009

  • Ishii K, Tamaoka A, Otsuka F, Iwasaki N, Shin K, Matsui A, Endo G, Kumagai Y, Ishii T, Shoji S, Ogata T, Ishizaki M, Doi M, Shimojo N (2004) Diphenylarsinic acid poisoning from chemical weapons in Kamisu, Japan. Annal Neurol 56:741–745. doi:10.1002/ana.20290

    Article  CAS  PubMed  Google Scholar 

  • Ishizaki M, Yanaoka T, Nakamura M, Hakuta T, Ueno S, Komuro M, Shibata M, Kitamura T, Honda A, Doy M, Ishii K, Tamaoka A, Shimojo N, Ogata T, Nagasawa E, Hanaoka S (2005) Detection of bis(diphenylarsine)oxide, diphenylarsinic acid and phenylarsonic acid, compounds probably derived from chemical warfare agents, in drinking well water. J Health Sci 51:130–137. doi:10.1248/jhs.51.130

    Article  CAS  Google Scholar 

  • Judicial Commission of the International Committee on Systematics of Prokaryotes (2008) The genus name Sinorhizobium Chen et al. 1988 is a later synonym of Ensifer Casida 1982 and is not conserved over the latter genus name, and the species name ‘Sinorhizobium adhaerens’ is not validly published. Opinion 84. Int J Syst Evol Microbiol 58:1973. doi:10.1099/ijs.0.2008/005991-0

    Article  Google Scholar 

  • Keister DL, Tully RE, van Berkum P (1999) A cytochrome P450 gene cluster in the Rhizobiaceae. J Gen Appl Microbiol 45:301–303. doi:10.2323/jgam.45.301

    Article  CAS  PubMed  Google Scholar 

  • Köhler M, Hofmann K, Völsgen F, Thurow K, Koch A (2001) Bacterial release of arsenic ions and organoarsenic compounds from soil contaminated by chemical warfare agents. Chemosphere 43:425–429. doi:10.1016/S0045-6535(00)00060-6

    Article  Google Scholar 

  • Kühn A, Yu S, Giffhorn F (2006) Catabolism of 1,5-anhydro-d-fructose in Sinorhizobium morelense S-30.7.5: discovery, characterization, and overexpression of a new 1,5-anhydro-d-fructose reductase and its application in sugar analysis and rare sugar synthesis. Appl Environ Microbiol 72:1248–1257. doi:10.1128/AEM.72.2.1248-1257.2006

    Article  PubMed  Google Scholar 

  • Kurata H (1980) Lessons learned from the destruction of the chemical weapons of the Japanese Imperial Forces. In: Goldblat J, Kjellstrand A, Kumar R, Lohs K, Lundin J, Nemec T, Robinson JP (eds) Chemical weapons: destruction and conversion. Stockholm International Peace Research Institute, Taylor and Francis, London, pp 77–93

    Google Scholar 

  • Nakamiya K, Nakayama T, Ito H, Edmonds JS, Shibata Y, Morita M (2007) Degradation of arylarsenic compounds by microorganisms. FEMS Microbiol Lett 274:184–188. doi:10.1111/j.1574-6968.2007.00835.x

    Article  CAS  PubMed  Google Scholar 

  • Pitten FA, Müller G, König P, Schmidt D, Thurow K, Kramer A (1999) Risk assessment of a former military base contaminated with organoarsenic-based warfare agents: uptake of arsenic by terrestrial plants. Sci Total Environ 226:237–245. doi:10.1016/S0048-9697(98)00400-8

    Article  CAS  PubMed  Google Scholar 

  • Reasoner DJ, Geldreich EE (1985) A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7

    CAS  PubMed  Google Scholar 

  • Stolz JF, Perera E, Kilonzo B, Kail B, Crable B, Fisher E, Ranganathan M, Wormer L, Basu P (2007) Biotransformation of 3-nitro-4-hydroxybenzene arsonic acid (roxarsone) and release of inorganic arsenic by Clostridium species. Environ Sci Technol 41:818–823. doi:10.1021/es061802i

    Article  CAS  PubMed  Google Scholar 

  • Takagi K, Yoshioka Y (2000) Development of a method for the rapid accumulation and isolation of recalcitrant pesticide decomposing bacteria in soil using charcoal. In: Pesticides, soil microbiology and sustainable agriculture. Abstracts and final program of the 3rd international symposium on environmental aspects of pesticide microbiology, pp 69–70

  • Takagi K, Iwasaki A, Kamei I, Satsuma K, Yoshioka Y, Harada N (2009) Aerobic mineralization of hexachlorobenzene by a newly isolated pentachloronitrobenzene-degrading Nocardioides sp. strain PD653. Appl Environ Microbiol 75:4452–4458. doi:10.1128/AEM.02329-08

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599. doi:10.1093/molbev/msm092

    Article  CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S Ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  Google Scholar 

  • Yamazaki K, Fujii K, Iwasaki A, Takagi K, Satsuma K, Harada N, Uchimura T (2008) Different substrate specificities of two triazine hydrolases (TrzNs) from Nocardioides species. FEMS Microbiol Lett 286:171–177. doi:10.1111/j.1574-6968.2008.01271.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was partially supported by a Grant-in-aid (Hazardous Chemicals) from the Ministry of Agriculture, Forestry and Fisheries of Japan (HC-06-2441-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Takagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, N., Takagi, K., Baba, K. et al. Biodegradation of diphenylarsinic acid to arsenic acid by novel soil bacteria isolated from contaminated soil. Biodegradation 21, 491–499 (2010). https://doi.org/10.1007/s10532-009-9318-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9318-3

Keywords

Navigation