Skip to main content
Log in

Nitrate and nitrite inhibition of methanogenesis during denitrification in granular biofilms and digested domestic sludges

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Anaerobic bioreactors that can support simultaneous microbial processes of denitrification and methanogenesis are of interest to nutrient nitrogen removal. However, an important concern is the potential toxicity of nitrate (NO3 ) and nitrite (NO2 ) to methanogenesis. The methanogenic toxicity of the NO x compounds to anaerobic granular biofilms and municipal anaerobic digested sludge with two types of substrates, acetate and hydrogen, was studied. The inhibition was the severest when the NO x compounds were still present in the media (exposure period). During this period, 95% or greater inhibition of methanogenesis was evident at the lowest concentrations of added NO2 tested (7.6–10.2 mg NO2 -N l−1) or 8.3–121 mg NO3 -N l−1 of added NO3 , depending on substrate and inoculum source. The inhibition imparted by NO3 was not due directly to NO3 itself, but instead due to reduced intermediates (e.g., NO2 ) formed during the denitrification process. The toxicity of NO x was found to be reversible after the exposure period. The recovery of activity was nearly complete at low added NO x concentrations; whereas the recovery was only partial at high added NO x concentrations. The recovery is attributed to the metabolism of the NO x compounds. The assay substrate had a large impact on the rate of NO2 metabolism. Hydrogen reduced NO2 slowly such that NO2 accumulated more and as a result, the toxicity was greater compared to acetate as a substrate. The final methane yield was inversely proportional to the amount of NO x compounds added indicating that they were the preferred electron acceptors compared to methanogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Anammox:

Anaerobic ammonium oxidation

AOB:

Ammonia oxidizing bacteria

AS:

Activated sludge

BNNR:

Biological nutrient nitrogen removal

DNRA:

Dissimilatory nitrate reduction to ammonium

EGSB:

Expanded granular sludge bed reactor

NPB:

Nitrite oxidizing bacteria

VFA:

Volatile fatty acids

UASB:

Upflow anaerobic sludge blanket reactor

WWTPs:

Wastewater treatment plants

References

  • Akunna JC, Bizeau C, Moletta R (1992) Denitrification in anaerobic digesters—possibilities and influence of waste-water Cod/N-Nox ratio. Environ Technol 13:825–836. doi:10.1080/09593339209385217

    Article  CAS  Google Scholar 

  • An YY, Yang FL, Wong FS, Chua HC (2008) Simultaneous bioenergy (CH4) production and nitrogen removal in a combined upflow anaerobic sludge blanket and aerobic membrane bioreactor. Energy Fuels 22:103–107. doi:10.1021/ef7002816

    Article  CAS  Google Scholar 

  • APHA (2005) In: Eaton AD, Clesceri LS, Rice EW, Greenberg AE (eds) Standard Methods for the Examination of Water and Wastewater, 21st edn. American Public Health Association, Washington DC, pp 1368

  • Appels L, Baeyens J, Degreve J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781. doi:10.1016/j.pecs.2008.06.002

    Article  CAS  Google Scholar 

  • Balderston WL, Payne WJ (1976) Inhibition of methanogenesis in salt-marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen-oxides. Appl Environ Microbiol 32(2):264–269

    PubMed  CAS  Google Scholar 

  • Baloch MI, Akunna JC, Collier PJ (2006) Carbon and nitrogen removal in a granular bed baffled reactor. Environ Technol 27:201–208. doi:10.1080/09593332708618634

    Article  PubMed  CAS  Google Scholar 

  • Barker HA (1941) Biochemical activities of studies on the methane fermentation: V. Methanobacterium omdianskii. J Biol Chem 137:153–167

    CAS  Google Scholar 

  • Clarens M, Bernet N, Delgenes JP, Moletta R (1998) Effects of nitrogen oxides and denitrification by Pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei. FEMS Microbiol Ecol 25:271–276. doi:10.1111/j.1574-6941.1998.tb00479.x

    Article  CAS  Google Scholar 

  • Ekama GA, Wentzel MC (2008) Nitrogen removal. In: Henze M, van Loosdrecht MCM, Ekema GA, Brdjanovic D (eds) Biological wastewater treatment: principles, modelling and design. IWA Publishing, London, pp 87–138

    Google Scholar 

  • Frankin RJ (2001) Full-scale experiences with anaerobic treatment of industrial wastewater. Water Sci Technol 44:1–6

    PubMed  CAS  Google Scholar 

  • Hendriksen HV, Ahring BK (1996) Integrated removal of nitrate and carbon in an upflow anaerobic sludge blanket (UASB) reactor: operating performance. Water Res 30:1451–1458. doi:10.1016/0043-1354(96)00041-3

    Article  CAS  Google Scholar 

  • Henze M, Comeau Y (2008) Wastewater characterization. In: Henze M, van Loosdrecht MCM, Ekema GA, Brdjanovic D (eds) Biological wastewater treatment: principles, modelling and design. IWA Publishing, London, pp 33–52

    Google Scholar 

  • Huang JS, Chou HH, Chen CM, Chiang CM (2007) Effect of recycle-to-influent ratio on activities of nitrifiers and denitrifiers in a combined UASB-activated sludge reactor system. Chemosphere 68:382–388. doi:10.1016/j.chemosphere.2007.01.037

    Article  PubMed  CAS  Google Scholar 

  • Jetten M, Schmid M, van de Pas-Schoonen K, Damste JSS, Strous M (2005) Anammox organisms: enrichment, cultivation, and environmental analysis. Environ Microbiol 397:34–57

    CAS  Google Scholar 

  • Kalyuzhnyi SV, Gladchenko MA, Kang H, Mulder A, Versprille A (2008) Development and optimisation of VFA driven DEAMOX process for treatment of strong nitrogenous anaerobic effluents. Water Sci Technol 57:323–328. doi:10.2166/wst.2008.044

    Article  PubMed  CAS  Google Scholar 

  • Kassam ZA, Yerushalmi L, Guiot SR (2003) A market study on the anaerobic wastewater treatment systems. Water Air Soil Pollut 143:179–192. doi:10.1023/A:1022807416773

    Article  CAS  Google Scholar 

  • Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH (2002) Present and long-term composition of MSW landfill leachate: a review. Crit Rev Environ Sci Technol 32:297–336. doi:10.1080/10643380290813462

    Article  CAS  Google Scholar 

  • Kluber HD, Conrad R (1998) Inhibitory effects of nitrate, nitrite, NO and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii. FEMS Microbiol Ecol 25:331–339

    CAS  Google Scholar 

  • Knight RL, Payne VWE, Borer RE, Clarke RA, Pries JH (2000) Constructed wetlands for livestock wastewater management. Ecol Eng 15:41–55. doi:10.1016/S0925-8574(99)00034-8

    Article  Google Scholar 

  • Kuenen JG (2008) Anammox bacteria: from discovery to application. Nat Rev Microbiol 6:320–326. doi:10.1038/nrmicro1857

    Article  PubMed  CAS  Google Scholar 

  • Lee CY, Shin HS, Hwang SJ (2004) Characteristics of granular sludge in a single upflow sludge blanket reactor treating high levels of nitrate and simple organic compounds. Water Sci Technol 50:217–224

    PubMed  CAS  Google Scholar 

  • Mallin MA, Cahoon LB (2003) Industrialized animal production—a major source of nutrient and microbial pollution to aquatic ecosystems. Popul Environ 24:369–385. doi:10.1023/A:1023690824045

    Article  Google Scholar 

  • Mulder A, Vandegraaf AA, Robertson LA, Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized-bed reactor. FEMS Microbiol Ecol 16:177–183. doi:10.1111/j.1574-6941.1995.tb00281.x

    Article  CAS  Google Scholar 

  • O’Reilly C, Colleran E (2005) Toxicity of nitrite toward mesophilic and thermophilic sulphate-reducing, methanogenic and syntrophic populations in anaerobic sludge. J Ind Microbiol Biotechnol 32:46–52. doi:10.1007/s10295-004-0204-z

    Article  PubMed  CAS  Google Scholar 

  • Peng YZ, Zhang SJ, Zeng W, Zheng SW, Mino T, Satoh H (2008) Organic removal by denitritation and methanogenesis and nitrogen removal by nitritation from landfill leachate. Water Res 42:883–892. doi:10.1016/j.watres.2007.08.041

    Article  PubMed  CAS  Google Scholar 

  • Rittman BE, McCarty PL (2001) Environmental biotechnology: principles and applications. McGraw-Hill, New York, p 754

    Google Scholar 

  • Strous M, Fuerst JA, Kramer EHM, Logemann S, Muyzer G, van de Pas-Schoonen KT, Webb R, Kuenen JG, Jetten MSM (1999) Missing lithotroph identified as new planctomycete. Nature 400(6743):446–449. doi:10.1038/22749

    Article  PubMed  CAS  Google Scholar 

  • Sumino T, Isaka K, Ikuta H, Saiki Y, Yokota T (2006) Nitrogen removal from wastewater using simultaneous nitrate reduction and anaerobic ammonium oxidation in single reactor. J Biosci Bioeng 102:346–351. doi:10.1263/jbb.102.346

    Article  PubMed  CAS  Google Scholar 

  • Tai CS, Singh KS, Grant SR (2006) Combined removal of carbon and nitrogen in an integrated UASB-jet loop reactor bioreactor system. J Environ Eng 132:624–637. doi:10.1061/(ASCE)0733-9372(2006)132:6(624)

    Article  CAS  Google Scholar 

  • Tchobanoglous G, Burtob FL, Stensel HD (2003) Wastewater engineering treatment and reuse: Metcalf & Eddy. McGraw-Hill, New York, p 1819

    Google Scholar 

  • Tugtas AE, Pavlostathis SG (2007a) Inhibitory effects of nitrogen oxides on a mixed methanogenic culture. Biotechnol Bioeng 96:444–455. doi:10.1002/bit.21105

    Article  PubMed  CAS  Google Scholar 

  • Tugtas AE, Pavlostathis SG (2007b) Effect of sulfide on nitrate reduction in mixed methanogenic cultures. Biotechnol Bioeng 97:1448–1459. doi:10.1002/bit.21338

    Article  PubMed  CAS  Google Scholar 

  • Tugtas AE, Pavlostathis SG (2008) Inhibitory effects of nitrate reduction on methanogenesis in the presence of different electron donors. Water Sci Technol 57(5):693–698. doi:10.2166/wst.2008.069

    Article  PubMed  CAS  Google Scholar 

  • van der Star WRL, Abma WR, Blommers D, Mulder JW, Tokutomi T, Strous M, Picioreanu C, Van Loosdrecht MCM (2007) Startup of reactors for anoxic ammonium oxidation: experiences from the first full-scale anammox reactor in Rotterdam. Water Res 41:4149–4163. doi:10.1016/j.watres.2007.03.044

    Article  PubMed  CAS  Google Scholar 

  • van Dongen U, Jetten MSM, van Loosdrecht MCM (2001) The SHARON®-Anammox® process for treatment of ammonium rich wastewater. Water Sci Technol 44(1):153–160

    PubMed  Google Scholar 

  • van Haandel A, Kato M, Cavalcanti P, Florencio L (2006) Anaerobic reactor design concepts for the treatment of domestic wastewater. Rev Environ Sci Biotechnol 5:21–38. doi:10.1007/s11157-005-4888-y

    Article  CAS  Google Scholar 

  • Vandegraaf AA, Mulder A, Debruijn P, Jetten MSM, Robertson LA, Kuenen JG (1995) Anaerobic oxidation of ammonium is a biologically mediated process. Appl Environ Microbiol 61:1246–1251

    CAS  Google Scholar 

  • Vigneron V, Ponthieu M, Barina G, Audic JM, Duquennoi C, Mazeas L, Bernet N, Bouchez T (2007) Nitrate and nitrite injection during municipal solid waste anaerobic biodegradation. Waste Manag 27:778–791. doi:10.1016/j.wasman.2006.02.020

    Article  PubMed  CAS  Google Scholar 

  • Zhang DJ (2003) The integration of methanogenesis with denitrification and anaerobic ammonium oxidation in an expanded granular sludge bed reactor. J Environ Sci (China) 15:423–432

    CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by grants of the University of Arizona Water Sustainability Program (TRIF-WSP) and from the International Arid Lands Consortium (IALC award # 06R-02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Field.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banihani, Q., Sierra-Alvarez, R. & Field, J.A. Nitrate and nitrite inhibition of methanogenesis during denitrification in granular biofilms and digested domestic sludges. Biodegradation 20, 801–812 (2009). https://doi.org/10.1007/s10532-009-9268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9268-9

Keywords

Navigation