Skip to main content
Log in

Aerobic biodegradation of the brominated flame retardants, dibromoneopentyl glycol and tribromoneopentyl alcohol

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Halogenated organic compounds constitute one of the largest and most diverse groups of chemicals in the environment. Many of these compounds are toxic, persistent and, as a result of their often limited biodegradability, tend to bioaccumulate in the environment. Dibromoneopentyl glycol (DBNPG) and tribromoneopentyl alcohol (TBNPA) are brominated flame retardants commonly used as additives during the manufacture of plastic polymers and as chemical intermediates in the synthesis of other flame retardants. Both are classified as not readily biodegradable. In this paper, we demonstrate the biodegradation of both DBNPG and TBNPA by a common bacterial consortium under aerobic conditions in enrichment cultures containing yeast extract. DBNPG and TBNPA biodegradation is accompanied by a release of bromide into the medium, due to a biological debromination reaction. Molecular analysis of the clone library PCR amplified 16S rRNA gene was used to characterize the bacterial consortium involved in the biodegradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aranda C, Godoy F, Becerra J, Barra R, Martínez M (2004) Aerobic secondary utilization of a non-growth and inhibitory substrate 2,4,6-trichlorophenol by Sphingopyxis chilensis S37 and Sphingopyxis-like strain S32. Biodegradation 14:265–274. doi:10.1023/A:1024752605059

    Article  Google Scholar 

  • Bastos F, Bessa J, Pacheco CC, De Marco P, Castro PML, Silva M, Jorge RF (2002) Enrichment of microbial culture able to degrade 1, 3-dichloro-2-propanol: a comparison between batch and continuous methods. Biodegradation 13:211–220. doi:10.1023/A:1020834603785

    Article  PubMed  CAS  Google Scholar 

  • Belkin S (1992) Biodegradation of haloalkanes. Biodegradation 3:299–313. doi:10.1007/BF00129090

    Article  CAS  Google Scholar 

  • Ben-Dov E, Shapiro OH, Siboni N, Kushmaro A (2006) Advantage of using Inosine at the 3′ termini of 16S rRNA gene universal primers for the study of microbial diversity. Appl Environ Microbiol 72:6902–6906. doi:10.1128/AEM.00849-06

    Article  PubMed  CAS  Google Scholar 

  • Bouwer EJ, Zehnder AJB (1993) Bioremediation of organic compound–putting microbial metabolism to work. Bioremediat J 11:360–367

    CAS  Google Scholar 

  • Cámara B, Herrera C, González M, Couve E, Hofer B, Seeger M (2004) From PCBs to highly toxic metabolites by the biphenyl pathway. Environ Microbiol 6:842–850. doi:10.1111/j.1462-2920.2004.00630.x

    Article  PubMed  CAS  Google Scholar 

  • Díez B, Pedrós-Alió C, Marsh TL, Massana R (2001) Application of denaturing gradient gel electrophoresis (DGGE) to study the diversity of marine picoeukaryotic assemblages and comparison of DGGE with other molecular techniques. Appl Environ Microbiol 67:2942–2951. doi:10.1128/AEM.67.7.2942-2951.2001

    Article  PubMed  Google Scholar 

  • Environmental Protection Agency (EPA) (2005) Furniture flame retardancy partnership: environmental profiles of chemical flame-retardant alternatives for low-density polyurethane foam. Chem Hazard Rev 2:2.1–2.26

    Google Scholar 

  • Erable B, Goubet I, Lamare S, Seltana A, Dominique M, Maugard T (2005) Non conventional hydrolytic dehalogenation of 1-chlorobutane by dehydrated bacteria. Biotechnol Bioeng 91:304–313. doi:10.1002/bit.20437

    Article  PubMed  CAS  Google Scholar 

  • Ezra S (2005) The fate of brominated neopentyl alcohols in a fractured chalk aquifer. PhD thesis. Ben-Gurion University of the Negev

  • Ezra S, Feinstein S, Yakirevich A, Adar E, Bilkis I (2006) Retadation of organo-bromides in a fractured chalk aquitard. J Contam Hydrol 86:195–214. doi:10.1016/j.jconhyd.2006.02.016

    Article  PubMed  CAS  Google Scholar 

  • Felske A, Rheims H, Wolterink A, Stackebrandt E, Akkermans DL (1997) Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soil. Microbiology 143:2983–2989

    Article  PubMed  CAS  Google Scholar 

  • Fetzner S (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 50:633–657. doi:10.1007/s002530051346

    Article  PubMed  CAS  Google Scholar 

  • Finan TM, Weidner S, Wong K, Buhrmester J, Chain P, Vorhölter FJ, Hernandez-Lucas I, Becker A, Cowie A, Gouzy J, Golding B, Pühler A (2001) The complete sequence of the 1,683-kb pSymB megaplasmid from the N2-fixing endosymbiont Sinorhizobium meliloti. Proc Natl Acad Sci USA 98:9889–9894. doi:10.1073/pnas.161294698

    Article  PubMed  CAS  Google Scholar 

  • Gribble GW (2003) The diversity of naturally produced organohalogens. Chemosphere 52:289–297. doi:10.1016/S0045-6535(03)00207-8

    Article  PubMed  CAS  Google Scholar 

  • Häggblom MM, Bossert ID (2003) Dehalogenation–microbial processes and environmental applications, 1st edn. Kluwer Academic Publishers, Norwell Massachusetts

    Google Scholar 

  • Jain RK, Kapur M, Labana S, Lal B, Sarma PM, Bhattacharya D, Thakur S (2005) Microbial diversity: application of microorganisms for the biodegradation of xenobiotics. Curr Sci 89:101–112

    CAS  Google Scholar 

  • Janssen BD, Oppentocht JE, Poelarends GJ (2001) Microbial dehalogenation. Curr Opin Biotechnol 12:254–258. doi:10.1016/S0958-1669(00)00208-1

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tomura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163. doi:10.1093/bib/5.2.150

    Article  PubMed  CAS  Google Scholar 

  • Lane DJ, Pace B, Olsen GJ, Stahlt DA, Sogint ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA 82:6955–6959. doi:10.1073/pnas.82.20.6955

    Article  PubMed  CAS  Google Scholar 

  • Lee MD, Odom JM, Buchanan RJ Jr (1998) Microbial dehalogenation of chlorinated solvents: insight from the field. Annu Rev Microbiol 52:423–452. doi:10.1146/annurev.micro.52.1.423

    Article  PubMed  CAS  Google Scholar 

  • Olaniran AO, Babalola GO, Okoh AI (2001) Aerobic dehalogenation potentials of four bacterial species isolated from soil and sewage sludge. Chemosphere 45:45–50. doi:10.1016/S0045-6535(01)00075-3

    Article  PubMed  CAS  Google Scholar 

  • Olaniran AO, Pillay D, Pillay B (2004) Haloalkane and haloacid dehalogenases from aerobic bacterial isolates indigenous to contaminated sites in Africa demonstrate diverse substrate specificities. Chemosphere 55:27–33. doi:10.1016/j.chemosphere.2003.10.067

    Article  PubMed  CAS  Google Scholar 

  • Organisation for Economic Cooperation and Development (OECD). (1992) OECD guideline for testing of chemicals—Zahn-Wellens/EMPA test (302B)

  • Ronen Z, Abeliovich A (2000) Anaerobic-aerobic process for microbial degradation of tetrabromobisphenol A. Appl Environ Microbiol 66:2372–2377. doi:10.1128/AEM.66.6.2372-2377.2000

    Article  PubMed  CAS  Google Scholar 

  • Salkinoja-Salonen M, Uotila J, Jokela ML, Saski E (1995) Organic halogens in the environment: studies of environmental biodegradability and human exposure. Environ Health Perspect 103:63–69. doi:10.2307/3432482

    Article  PubMed  CAS  Google Scholar 

  • Schenzle A, Lenke H, Spain JCS, Knackmuss HJ (1999) Chemoselective nitro group reduction and reductive dechlorination initiate degradation of 2-chloro-5-nitrophenol by Ralstonia eutropha JMP134. Appl Environ Microbiol 65:2317–2323

    PubMed  CAS  Google Scholar 

  • Segev O, Abeliovich A, Kushmaro A (2007) Biodegradation of dibromonropentyl glycol by bacterial consortium. Chemosphere 68:958–964. doi:10.1016/j.chemosphere.2007.01.014

    Article  PubMed  CAS  Google Scholar 

  • Slater JH, Bull AT, Hardman DJ (1995) Microbial dehalogenation. Biodegradation 6:181–189. doi:10.1007/BF00700456

    Article  CAS  Google Scholar 

  • Smidt H, De Vos WM (2004) Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73. doi:10.1146/annurev.micro.58.030603.123600

    Article  PubMed  CAS  Google Scholar 

  • Song B, Palleroni NJ, Haggblom MM (2000) Isolation and characterization of diverse halobenzoate degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66:3446–3453. doi:10.1128/AEM.66.8.3446-3453.2000

    Article  PubMed  CAS  Google Scholar 

  • Van Pee KH, Unversucht S (2003) Biological dehalogenation and halogenation reactions. Chemosphere 52:299–312. doi:10.1016/S0045-6535(03)00204-2

    Article  PubMed  CAS  Google Scholar 

  • Wilkes H, Wittich RM, Timmis KN, Fortnagel P, Francke W (1996) Degradation of chlorinated dibenzofurans and dibenzo-p-dioxins by Sphingomonas sp. strain RW1. Appl Environ Microbiol 62:367–371

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by a grant from BMBF-MOST Cooperation in Water Technologies (Grant WT-501) and a grant from the Ramat Hovav Council, Israel. We thank the Rieger Foundation and the Israel Commercial Industrial club for O. Segev’s generous fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Kushmaro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segev, O., Meusel, W., Friedenberger, M. et al. Aerobic biodegradation of the brominated flame retardants, dibromoneopentyl glycol and tribromoneopentyl alcohol. Biodegradation 20, 621–627 (2009). https://doi.org/10.1007/s10532-009-9249-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-009-9249-z

Keywords

Navigation