Skip to main content
Log in

Biodegradation of chlorobenzene under hypoxic and mixed hypoxic-denitrifying conditions

  • Original Paper
  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Pseudomonas veronii strain UFZ B549, Acidovorax facilis strain UFZ B530, and a community of indigenous groundwater bacteria, adapted to oxygen limitation, were cultivated on chlorobenzene and its metabolites 2-chloro-cis,cis-muconate and acetate/succinate under hypoxic and denitrifying conditions. Highly sensitive approaches were used to maintain defined low oxygen partial pressures in an oxygen-re-supplying headspace. With low amounts of oxygen available all cultures converted chlorobenzene, though the pure strains accumulated 3-chlorocatechol and 2-chloro-cis,cis-muconate as intermediates. Under strictly anoxic conditions no chlorobenzene transformation was observed, while 2-chloro-cis,cis-muconate, the fission product of oxidative ring cleavage, was readily degraded by the investigated chlorobenzene-degrading cultures at the expense of nitrate as terminal electron acceptor. Hence, we conclude that oxygen is an obligatory reactant for initial activation of chlorobenzene and fission of the aromatic ring, but it can be partially replaced by nitrate in respiration. The tendency to denitrify in the presence of oxygen during growth on chlorobenzene appeared to depend on the oxygen availability and the efficiency to metabolize chlorobenzene under oxygen limitation, which is largely regulated by the activity of the intradiol ring fission dioxygenase. Permanent cultivation of a groundwater consortium under reduced oxygen levels resulted in enrichment of a community almost exclusively composed of members of the β-Proteobacteria and Bacteroidetes. Thus, it is deduced that these strains can still maintain high activities of oxygen-requiring enzymes that allow for efficient CB transformation under hypoxic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alfreider A, Vogt C, Babel W (2002) Microbial diversity in an in situ reactor system treating monochlorobenzene contaminated groundwater as revealed by 16S ribosomal DNA analysis. Syst Appl Microbiol 25:232–240

    Article  CAS  Google Scholar 

  • Alfreider A, Vogt C, Babel W (2003) Expression of cholorocatechol 1, 2-dioxygenase and cholorocatechol 2,3-dioxygenase genes in chlorobenzene-contaminated subsurface samples. Appl Environ Microbiol 69: 1372–1376

    Article  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Google Scholar 

  • Balcke GU, Turunen LP, Geyer R, Wenderoth DF, Schlosser D (2004) Chlorobenzene biodegradation under consecutive aerobic-anaerobic conditions. FEMS Microbiol Ecol 49:109–120

    Article  CAS  Google Scholar 

  • Chen F, Xia Q, Ju L-K (2003) Aerobic denitrification of Pseudomonas aeruginosa monitored by online NAD(P)H fluorescence. Appl Environ Microbiol 69:6715–6722

    Article  CAS  Google Scholar 

  • Dean JA (1992) Lange’s handbook of chemistry. 14 edn. McGraw-Hill, New York

    Google Scholar 

  • Dermietzel J, Vieth A (2002) Chloroaromatics in groundwater: chances of bioremediation. Environ Geol 41:683–689

    Article  CAS  Google Scholar 

  • Dikshit KL, Dikshit RP, Webster DA (1990) Study of Vitreoscilla globin (vgb) gene-expression and promoter activity in E. coli through transcriptional fusion. Nucleic Acids Res 18:4149–4155

    Article  CAS  Google Scholar 

  • Fritz H, Reineke W, Schmidt E (1991) Toxicity of chlorobenzene on Pseudomonas sp. strain RHO1, a chlorobenzene-degrading strain. Biodegradation 2:165–170

    Article  CAS  Google Scholar 

  • Holocher J, Peeters F, Aeschbach-Hertig W, Kinzelbach W, Kipfer R (2003) Kinetic model of gas bubble dissolution in groundwater and its implications for the dissolved gas composition. Environ Sci Technol 37:1337–1343

    Article  CAS  Google Scholar 

  • Kaschabek SR, Reineke W (1994) Synthesis of bacterial metabolites from haloaromatic degradation. 1. Fe(III)-catalyzed peracetic acid oxidation of halocatechols, a facile entry to cis,cis-2-halo-2,4-hexadienedioic acids and 3-halo-5-oxo-2(5H)-furanylideneacetic acids. J Org Chem 59:4001–4003

    Article  CAS  Google Scholar 

  • Klimant I, Kuhl M, Glud RN, Holst G (1997) Optical measurement of oxygen and temperature in microscale: strategies and biological applications. Sensor Actuat B-Chem 38:29–37

    Article  Google Scholar 

  • Knowles R (1982) Denitrification. Microbiol Rev 46:43–70

    CAS  Google Scholar 

  • Krooneman J, Moore ERB, van Velzen JCL, Prins RA, Forney LJ, Gottschal JC (1998) Competition for oxygen and 3-chlorobenzoate between two aerobic bacteria using different degradation pathways. FEMS Microbiol Ecol 26:171–179

    Article  CAS  Google Scholar 

  • Kukor JJ, Olsen RH (1996) Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments. Appl Environ Microbiol 62:1728–1740

    CAS  Google Scholar 

  • Leahy JG, Olsen RH (1997) Kinetics of toluene degradation by toluene-oxidizing bacteria as a function of oxygen concentration, and the effect of nitrate. FEMS Microbiol Ecol 23:23–30

    Article  CAS  Google Scholar 

  • Ma GH, Love NG (2001) BTX biodegradation in activated sludge under multiple redox conditions. J Environ Eng 127:509–516

    Article  CAS  Google Scholar 

  • Martienssen M, Fabritius H, Kukla S, Balcke GU, Hasselwander E, Schirmer M (2006) Determination of naturally occurring MTBE biodegradation by analysing metabolites and biodegradation by-products. J Contam Hydrol 87:37–53

    Article  CAS  Google Scholar 

  • Mason HS (1947) The allergenic principles of poison ivy . VI. Note on the synthesis of 3-substituted catechols. J Am Chem Soc 69:2241–2242

    Article  CAS  Google Scholar 

  • Otten MF, Stork DM, Reijnders WNM, Westerhoff HV, Van Spanning RJM (2001) Regulation of expression of terminal oxidases in Paracoccus denitrificans. Eur J Biochem 268:2486–2497

    Article  CAS  Google Scholar 

  • Patureau D, Bernet N, Delgenès JP, Moletta R (2000) Effect of dissolved oxygen and carbon-nitrogen loads on denitrification by an aerobic consortium. Appl Microbiol Biotechnol 54:535–542

    Article  CAS  Google Scholar 

  • Pérez-Pantoja D, Ledger T, Pieper DH, González B (2003) Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134(pJP4) in 3-chlorobenzoic acid. J Bacteriol 185:1534–1542

    Article  CAS  Google Scholar 

  • Reineke W, Knackmuss H-J (1984) Microbial metabolism of haloaromatics: isolation and properties of a chlorobenzene-degrading bacterium. Appl Environ Microbiol 47:395–402

    CAS  Google Scholar 

  • Reineke W (2001) Aerobic and anaerobic biodegradation potentials of microorganisms. In: Beek B (ed) The handbook of environmental chemistry, biodegradation and persistence 2K vol. Springer, Heidelberg, Berlin, pp 1–161

    Chapter  Google Scholar 

  • Rice CW, Hempfling WP (1978) Oxygen-limited continuous culture and respiratory energy conservation in Escherichia coli. J Bacteriol 134:115–124

    CAS  Google Scholar 

  • Schlömann M (1994) Evolution of chlorocatechol catabolic pathways. Conclusions to be drawn from comparisons of lactone hydrolases. Biodegradation 5:301–321

    Article  Google Scholar 

  • Schweigert N, Zehnder AJB, Eggen RIL (2001) Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Environ Microbiol 3:81–91

    Article  CAS  Google Scholar 

  • Tolosa L, Kostov Y, Harms P, Rao G (2002) Noninvasive measurement of dissolved oxygen in shake flasks. Biotechnol Bioeng 80:594–597

    Article  CAS  Google Scholar 

  • Tseng CP, Albrecht J, Gunsalus RP (1996) Effect of microaerophilic cell growth conditions on expression of the aerobic (cyoABCDE and cydAB) and anaerobic (narGHJI, frdABCD, and dmsABC) respiratory pathway genes in Escherichia coli. J Bacteriol 178:1094–1098

    CAS  Google Scholar 

  • Vogt C, Alfreider A, Lorbeer H, Hoffmann D, Wünsche L, Babel W (2004a) Bioremediation of chlorobenzene-contaminated ground water in an in situ reactor mediated by hydrogen peroxide. J Contam Hydrol 68:121–141

    Article  CAS  Google Scholar 

  • Vogt C, Simon D, Alfreider A, Babel W (2004b) Microbial degradation of chlorobenzene under oxygen-limited conditions leads to accumulation of 3-chlorocatechol. Environ Toxicol Chem 23:265–270

    Article  CAS  Google Scholar 

  • Wilson Durant LP, D’Adamo PC, Bouwer EJ (1999) Aromatic hydrocarbon biodegradation with mixtures of O2 an NO 3 as electron acceptors. Environ Eng Sci 16:487–499

    Article  Google Scholar 

  • Wilson LP, Bouwer EJ (1997) Biodegradation of aromatic compounds under mixed oxygen/denitrifying conditions: a review. J Ind Microbiol Biotechnol 18:116–130

    Article  CAS  Google Scholar 

  • Zumft WG (1997) Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61:533–616

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Ulrich Balcke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nestler, H., Kiesel, B., Kaschabek, S.R. et al. Biodegradation of chlorobenzene under hypoxic and mixed hypoxic-denitrifying conditions. Biodegradation 18, 755–767 (2007). https://doi.org/10.1007/s10532-007-9104-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10532-007-9104-z

Keywords

Navigation