Skip to main content

Advertisement

Log in

Less than six generations to save the chacoan peccary

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The Dry Chaco has one of the highest deforestation rates of the world. The chacoan peccary (Catagonus wagneri; ChP) is endemic to the forests of this region and faces a high risk of extinction. However, we lack sufficient information about this species to develop effective conservation actions. This is the first study to determine the relevance of primary and secondary forest as habitat for the species and to address opportunities for conservation. We used occupancy modelling to study habitat selection. Using additional information on the species and the region, we then estimated the time left before the ChP’s habitat outside of protected areas is completely lost, and the number of ChP generations likely to exist before this happens. Finally, we identified protected areas that can sustain viable populations, and estimated the number of individuals that can survive within them. We found that the ChP occupies both primary forests and secondary forests. Also, that if deforestation rates remain consistent, the habitat for the ChP outside protected areas will have disappeared before 2051 (< 6 peccary generations). Furthermore, we found that most protected areas are too small and isolated to sustain viable populations. Our results have great management implications. Well-managed forests may allow the conservation of the ChP. Initiatives focused on forest conservation should increase, alongside the restoration of degraded and deforested areas. We also recommend the creation of new protected areas and wildlife corridors, and working horizontally with local communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Code availability

Not applicable.

References

  • Adger WN, Arnell NW, Tompkins EL (2005) Adapting to climate change: perspectives across scales. Glob Environ Change 15(2):75–76

    Article  Google Scholar 

  • Altrichter M (2005) The sustainability of subsistence hunting of peccaries in the Argentine Chaco. Biol Conserv 126(3):351–362

    Article  Google Scholar 

  • Altrichter M, Boaglio GI (2004) Distribution and relative abundance of peccaries in the Argentine Chaco: associations with human factors. Biol Conserv 116:217–225

    Article  Google Scholar 

  • Altrichter M, Taber A, Noss A, Maffei L, Campos J (2015) Catagonus wagneri. The IUCN Red List of Threatened Species 2015: e.T4015A72587993. https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T4015A72587993.en. Downloaded on 13 Mar 2020

  • Altrichter M, Desbiez A, Camino M, Decarre J (eds) (2016) Pecarí del Chaco o Taguá Catagonus wagneri. Una estrategia para su conservación. Revisión de situación, análisis de viabilidad poblacional y aptitud del hábitat. UICN Grupo Especialista en pecaríes, SSC, Guyra Paraguay, CCCI Paraguay, Asunción, 118 p

  • Arnold TW (2010) Uninformative parameters and model selection using Akaike’s Information Criterion. J Wildl Manag 74(6):1175–1178

    Article  Google Scholar 

  • Bartoń K (2015) MumIn: multi-model inference. 1.13.4 – R package. Available: http://cran.rproject.org/web/packages/MuMIn/index.html

  • Basualdo M, Huykman N, Volante JN, Paruelo JM, Piñeiro G (2019) Lost forever? Ecosystem functional changes occurring after agricultural abandonment and forest recovery in the semiarid Chaco forests. Sci Total Environ 650:1537–1546

    Article  CAS  PubMed  Google Scholar 

  • Bonino EE, Araujo P (2005) Structural differences between a primary and a secondary forest in the Argentine Dry Chaco and management implications. For Ecol Manag 206:407–412

    Article  Google Scholar 

  • Brondizio ES, Le Tourneau FM (2016) Environmental governance for all. Science 352(6291):1272–1273

    Article  CAS  PubMed  Google Scholar 

  • Brown JH (1984) On the relationship between abundance and distribution of species. Am Nat 124(2):255–279

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretical approach. Springer-Verlag, New York, p 496

    Google Scholar 

  • Cabrera AL (1976) Regiones Fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Jardinería (2ª ed). ACME S.A.C.I., Buenos Aires

  • Camino M, Torres RM (2019) Quimilero (Parachoerus wagneri). Categorización 2019 de los mamíferos de Argentina según su riesgo de extinción. Lista Roja de los mamíferos de Argentina. https://doi.org/10.31687/SaremLR.19.202. http://cma.sarem.org.ar

  • Camino M, Cortez S, Cerezo A, Altrichter M (2016) Wildlife conservation, perceptions of different co-existing cultures. Int J Conserv Sci 7(1):109–122

    Google Scholar 

  • Camino M, Cortez S, Altrichter M, Matteucci SD (2017) Experiencia de Monitoreo Participativo de Fauna en el Chaco Seco Argentino. Mastozool Neotrop 24(1):31–46

    Google Scholar 

  • Camino M, Cortez S, Altrichter M, Matteucci SD (2018) Relations with wildlife of Wichi and Criollo people of the Dry Chaco, a conservation perspective. Ethnobiol Conserv 7:11

    Google Scholar 

  • Camino M, Thompson J, Andrade L, Cortez S, Matteucci SD, Altrichter M (2020) Using local ecological knowledge to improve large terrestrial mammal surveys, build local capacity and increase conservation opportunities. Biol Conserv 244:108450

    Article  Google Scholar 

  • Cartes JL, Cuéllar E, del Castillo H, Neris N, Saldívar S, Thompson J, Velilla M (2017) Cetartiodactyla & Perissodactyla: animals with hoof (in Spanish). In: Asociación Paraguaya de Mastozoología y Secretaría del Ambiente (ed) Red book of Paraguayan mammals, endangered species (in Spanish). Creatio, Asunción, 137pp

  • Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci Adv 1(5):e1400253

    Article  PubMed  PubMed Central  Google Scholar 

  • Chase JM, Blowes SA, Knight TM, Gerstner K, May F (2020) Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584(7820):238–243

    Article  CAS  PubMed  Google Scholar 

  • Cuéllar E, Noss AJ (2014) Mammal diversity and local participation in the South American Chaco conservation (in Spanish). Therya 5(1):39–60

    Article  Google Scholar 

  • Curtis PG, Slay CM, Harris NL, Tyukavina A, Hansen MC (2018) Classifying drivers of global forest loss. Science 361(6407):1108–1111

    Article  CAS  PubMed  Google Scholar 

  • De la Sancha N, Boyle SA, McIntyre NE, Brooks DM, Yanosky A, Soto EC, Mereles F, Camino M, Stevens RD (2021) The disappearing Dry Chaco, one of the last dry forest systems on earth. Landsc Ecol 36:2997–3012

    Article  Google Scholar 

  • De Sy V, Herold M, Achard F, Beuchle R, Clevers JGPW, Lindquist E, Verchot L (2015) Land use patterns and related carbon losses following deforestation in South America. Environ Res Lett 10(12):124004

    Article  Google Scholar 

  • Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, Arneth A, Agard J, Balvanera P, Brauman KA, Butchart SHM, Chan KMA, Garibaldi LA, Kazuhito I, Liu J, Subramanian SM, Midgley GF, Miloslavich P, Molnár Z, Obura D, Arneth A, Pfaff A, Polasky S, Purvis A, Razzaque J, Reyers B, Chowdhury RR, Shin YJ, Visseren-Hamakers I, Willis K, Zayas CN (2019) Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366(6471):1327–1336

    Article  CAS  Google Scholar 

  • Erbaugh JT, Pradhan N, Adams J, Oldekop JA, Agrawal A, Brockington D, Pritchard R, Chhatre A (2020) Global forest restoration and the importance of prioritizing local communities. Nat Ecol Evol 4:1472–1476

    Article  CAS  PubMed  Google Scholar 

  • Eriksson O (2021) The importance of traditional agricultural landscapes for preventing species extinctions. Biodivers Conserv 30(5):1341–1357

    Article  Google Scholar 

  • Fehlenberg V, Baumann M, Gasparri NI, Piquer-Rodriguez M, Gavier-Pizarro G, Kuemmerle T (2017) The role of soybean production as an underlying driver of deforestation in the South American Chaco. Glob Environ Change 45:24–34

    Article  Google Scholar 

  • Ferraz KM, Silva Angelieri CC, Altrichter M, Desbiez A, Yanosky A, Campos Krauer JM, Camino M, Cabral H, Cartes J, Leny Cuellar R, Torres R, Gallegos M, Giordano AJ, Decarre J, Maffei L, Neris N, Saldivar Bellassai S, Wallace R, Lizarraga L, Thompson J, Velilla M (2016) Predicting the current distribution of the ChP (Catagonus wagneri) in the Gran Chaco. Suiform Sound 15(1):53–63

    Google Scholar 

  • Fiske I, Chandler R (2011) unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J Stat Softw 43(10):1–23

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, DeFries R, Coe MT, Howard EA, Asner GP, Daily GC, Kucharik CJ, Barford C, Gibbs HK, Monfreda C, Ramankutty N, Bonan G, Helkowski JH, Patz JA, Snyde PK (2005) Global consequences of land use. Science 309(5734):570–574

    Article  CAS  PubMed  Google Scholar 

  • Garnett ST, Burgess ND, Fa JE, Fernández-Llamazares Á, Molnár Z, Robinson CJ et al (2018) A spatial overview of the global importance of indigenous lands for conservation. Nat Sustain 1(7):369–374

    Article  Google Scholar 

  • Gasparini GM, Ubilla M, Tonni EP (2013) The Chacoan peccary, Catagonus wagneri (Mammalia, Tayassuidae), in the late Pleistocene (northern Uruguay, South America): paleoecological and paleobiogeographic considerations. Hist Biol 25(5–6):679–690

    Article  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853

    Article  CAS  PubMed  Google Scholar 

  • Hardin G (1960) The competitive exclusion principle. Science 131:1292–1297

    Article  CAS  PubMed  Google Scholar 

  • Johnson CA, Bronstein JL (2019) Coexistence and competitive exclusion in mutualism. Ecology 100(6):e02708. https://doi.org/10.1002/ecy.2708

    Article  PubMed  Google Scholar 

  • Kuemmerle T, Altrichter M, Baldi G, Cabido M, Camino M, Cuellar E, Cuellar RL, Decarre J, Diaz S, Gasparri I, Gavier-Pizarro G, Ginzburg R, Giordano AJ, Grau HR, Jobbagy E, Leynaud G, Macchi L, Mastrangelo M, Matteucci SD, Noss A, Paruelo J, Piquer-Rodriguez M, Romero-Munoz A, Semper-Pascual A, Thompson J, Torrella S, Torres R, Volante JN, Yanosky A, Zak M (2017) Forest conservation: remember Gran Chaco. Science 355:465–465

    Article  CAS  PubMed  Google Scholar 

  • Kunst C, Navall M, Coria RD, Ledesma R, Tomsic P, González A, Gómez A, Feuillade D (2015) Guide of recommended practices for silvopastoril systems in Santiago del Estero (in Spanish). INTA, Santiago del Estero, p 93

    Google Scholar 

  • Leus K, Altrichter M, Desbiez A, Camino M, Giordano AJ, Campos Krauer JM, Brooks DM, Thompson J, Nuñez­Regueiro M (2016) Vortex population viability analysis model for the ChP (Catagonus wagneri). Suiform Sound 15(1):64–76

    Google Scholar 

  • López de Casenave JL, Pelotto JP, Protomastro J (1995) Edge-interior differences in vegetation structure and composition in a Chaco semi-arid forest, Argentina. For Ecol Manag 72(1):61–69

    Article  Google Scholar 

  • MacKenzie DI, Bailey LL (2004) Assessing the fit of site-occupancy models. J Agri Biol Environ Stat 9(3):300–318

  • MacKenzie DI, Nichols JD, Lachman GB, Droege S, Andrew Royle J, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83(8):2248–2255

  • MacKenzie DI, Nichols JD, Royle JA, Pollock KH, Bailey LA, Hines JE (2006) Occupancy estimation and modeling: inferring patterns and dynamics of species occurrence. Academic Press, San Diego, p 324

    Google Scholar 

  • Matteucci SD, Camino M (2012) Protected areas isolation in the Chaco region, Argentina. J Geogr Geol 4(3):15–28

    Google Scholar 

  • Mayer JJ, Brandt PN (1982) Identity, distribution and natural history of the peccaries, Tayassuidae. Mamm Biol S Am 6:433–455

    Google Scholar 

  • Mazerolle MJ (2015) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.0-3. http://CRAN.R-project.org/package=AICcmodavg

  • Mistry J, Berardi A (2016) Bridging indigenous and scientific knowledge. Science 352(6291):1274–1275

    Article  CAS  PubMed  Google Scholar 

  • Morello J, Saravia Toledo CA (1959) El bosque chaqueño I. Paisaje primitivo, paisaje natural y paisaje cultural en el oriente de Salta. Revista Agronómica del Noroeste Argentino 3:5–81

    Google Scholar 

  • Morello J, Pengue W, Rodríguez A (2005) Un siglo de cambios de diseño del paisaje: el Chaco Argentino. Primeras Jornadas Argentinas de Ecología del Paisaje 1–31

  • Morello J, Matteucci SD, Rodríguez AF, Silva M (2012) The Dry Chaco región (in Spanish). In: Morello J, Matteucci SD, Rodríguez AF, Silva M (eds) Ecorregions and ecosystem complexes (in Spanish). Orientación Gráfica Editora S.R.L., Buenos Aires

    Google Scholar 

  • Nori J, Torres R, Lescano JN, Cordier JM, Periago ME, Baldo D (2016) Protected areas and spatial conservation priorities for endemic vertebrates of the Gran Chaco, one of the most threatened ecoregions of the world. Divers Distrib 22(12):1212–1219

    Article  Google Scholar 

  • Núñez-Regueiro MM, Branch L, Fletcher RJ Jr, Marás GA, Derlindati E, Tálamo A (2015) Spatial patterns of mammal occurrence in forest strips surrounded by agricultural crops of the Chaco region, Argentina. Biol Conserv 187:19–26

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GV, Underwood EC, D’Amico J, Itoua I, Strando HE, Morrison JC, Loucks CJ, Allnut TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2001) Terrestrial ecoregions of the world: a new map of life on earth. BioScience 51(11):933–938

    Article  Google Scholar 

  • Periago ME, Chillo V, Ojeda RA (2015) Loss of mammalian species from the South American Gran Chaco: empty savanna syndrome? Mamm Rev 45:41–53

    Article  Google Scholar 

  • Piquer-Rodríguez M, Butsic V, Gärtner P, Macchi L, Baumann M, Pizarro GG, Volante JN, Gasparri IN, Kuemmerle T (2018) Drivers of agricultural land-use change in the Argentine Pampas and Chaco regions. Appl Geogr 91:111–122

    Article  Google Scholar 

  • Romero-Muñoz A, Benítez-López A, Zurell D, Baumann M, Camino M, Decarre J, del Castillo H, Giordano AJ, Gómez-Valencia B, Levers C, Noss AJ, Quiroga V, Thompson J, Torres R, Velilla M, Weiler A, Kuemmerle T (2020) Increasing synergistic effects of habitat destruction and hunting on mammals over three decades in the Gran Chaco. Ecography 43(7):954–966. https://doi.org/10.1111/ecog.05053

    Article  Google Scholar 

  • Saldivar-Bellassai S, Feldpausch-Parker A, Giordano AJ, Frair J (2021) Hunting practices and harvest of peccaries in the northern Paraguayan Dry Chaco. Biol Conserv 256:109059

    Article  Google Scholar 

  • Saura S, Bertzky B, Bastin L, Battistella L, Mandrici A, Dubois G (2019) Global trends in protected area connectivity from 2010 to 2018. Biol Conserv 238:108183

    Article  PubMed  PubMed Central  Google Scholar 

  • Semper-Pascual A, Decarre J, Baumann M, Busso JM, Camino M, Gómez-Valencia B, Kuemmerle T (2019) Biodiversity loss in deforestation frontiers: linking occupancy modelling and physiological stress indicators to understand local extinctions. Biol Conserv 236:281–288

    Article  Google Scholar 

  • Sowls LK (1997) Javelinas and other peccaries, 2nd edn. Texas A&M University Press, College Station

    Google Scholar 

  • Taber AB, Doncaster CP, Neris NN, Colman FH (1993) Ranging behavior and population dynamics of the ChP, Catagonus wagneri. J Mammal 74(2):443–454

    Article  Google Scholar 

  • Tálamo A, Caziani SM (2003) Variation in woody vegetation among sites with different disturbance histories in the Argentine Chaco. For Ecol Manag 184(1–3):79–92

  • Torres R, Tamburini D, Boaglio G, Decarre J, Castro L, Lescano J, Barri F (2018) New data on the endangered ChP (Catagonus wagneri) link the core distribution with its recently discovered southern population. Mammalia 83(4):357–362

    Article  Google Scholar 

  • Trigo CB, Tálamo A, Núñez-Regueiro MM, Derlindati EJ, Marás GA, Barchuk AH, Palavecino A (2017) A woody plant community and tree-cacti associations change with distance to a water source in a dry Chaco forest of Argentina. Rangel J 39(1):15–23

    Article  Google Scholar 

  • UNEP-WCMC, IUCN (2020) Protected planet: The World Database on Protected Areas (WDPA). https://www.protectedplanet.net/en

  • Vallejos M, Volante JN, Mosciaro MJ, Vale LM, Bustamante ML, Paruelo JM (2015) Transformation dynamics of the natural cover in the Dry Chaco ecoregion: a plot level geo-database from 1976 to 2012. J Arid Environ 123:3–11

    Article  Google Scholar 

  • Volante JN, Mosciaro MJ, Gavier-Pizarro GI, Paruelo JM (2016) Agricultural expansion in the Semiarid Chaco: poorly selective contagious advance. Land Use Policy 55:154–165

    Article  Google Scholar 

  • Wallace RB, Gómez H, Porcel ZR, Rumiz DI (eds) (2010) Distribution, ecology and conservation of medium-sized and large mammals of Bolivia (In Spanish). Centro de Ecología Difusión, Fundación Simón I. Patiño, Santa Cruz, 884 pp

Download references

Acknowledgements

We thank financial support of the Rufford Foundation, the EDGE of Existence Programme of the Zoological Society of London, the Agencia de Promoción de Ciencia y Técnica de la Argentina and el Ministerio de Trabajo y Seguridad Social de la Nación. We thank local indigenous and criollo people for their participation of this research, and the support of Red Agroforestal Chaco, Marisa Pizzi, Horacio Córdoba, Ines Quilici, Hugo Hernando Correa and Ezequiel Pintos. We also thank the information provided by Guyra Paraguay, Katia Ferraz and IUCN that although referenced, was extremely useful. We thank Paul Barnes and Claudia Grey of the Zoological Society of London for their careful reading of our manuscript, and their thoughtful and constructive comments and also, for revising our English. Finally, we thank the anonymous reviewers that greatly contributed to improve our manuscript.

Funding

Our sources of funding were the Rufford Foundation (Grant No. 1 & 2), the EDGE of Existence Programme of the Zoological Society of London, the Agencia de Promoción de Ciencia y Técnica de la Argentina (Grant No. 01000100101289), and el Ministerio de Trabajo y Seguridad Social de la Nación. The authors of this manuscript have no direct financial benefits that could result from publication.

Author information

Authors and Affiliations

Authors

Contributions

MC: Conceived the study, Designed the study; MC, PAV-A, RT, SC: Data gathering; MC, JT, PAV-A, SC, RT: Data analysis; MC, SC, SC, SDM, MA: Interpretation of results; MC, PAV-A, SC: Manuscript draft. All authors revised the manuscript carefully and critically, and approved this version to be sent to this journal.

Corresponding author

Correspondence to Micaela Camino.

Ethics declarations

Conflict of interest

The authors declare that they have no actual or potential conflict of interest influencing their research.

Additional information

Communicated by Dirk Sven Schmeller.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camino, M., Thompson, J., Arriaga Velasco-Aceves, P. et al. Less than six generations to save the chacoan peccary. Biodivers Conserv 31, 413–432 (2022). https://doi.org/10.1007/s10531-021-02337-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-021-02337-x

Keywords

Navigation