Skip to main content

Advertisement

Log in

Priorities for cave fauna conservation in the Iuiú karst landscape, northeastern Brazil: a threatened spot of troglobitic species diversity

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The definition of priority for conservation becomes an emergency because habitat loss and degradation are among the main impacts on karst landscapes. In this sense, the present study aimed to evaluate the priorities for cave conservation through the combination of indexes that use species richness, species distribution, and proportion of the deforested area (PDA). The caves presented 287 non-troglobitic species and 37 species (11.7 %) with troglomorphic traits that are distributed in 50 % of the caves. The caves also present a high phylogenetic and functional diversity of terrestrial, aquatic, and amphibious cave-restricted species, including many predators, scavengers, and one phytophagous species, most of them presenting remarkable specialized traits and restrict distribution in a few caves and in specific biotopes. The PDA were positively related to the distance from the limestone outcrop, because of the restrictive landforms for agropastoral activities. At least two caves present extremely high priority for conservation (Baixão and Baixa da Fortuna caves), while four caves present high priority, and almost all others require at least a conservation action. Suggestively, in this specific case, a coherent strategy was shown to maintain the preserved vegetation around the caves, improving the restoration of small fragments and minimizing alterations. Despite the results of the indices, the singularity of the area regarding the taxonomic and functional diversity of troglobites also reinforces the urgent need for conservation actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguiar L, Bernard E, Machado RB (2014) Habitat use and movements of Glossophaga soricina and Lonchophylla dekeyseri (Chiroptera: Phyllostomidae) in a Neotropical savannah. Zoologia (Curitiba) 31(3):223–229

    Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC et al (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Google Scholar 

  • Apgaua DMGS, Santos RM, Pereira DGSOM, Pires GC, Fontes GG, MAL, & Tng DYP (2014) Beta-diversity in seasonally dry tropical forests (SDTF) in the Caatinga Biogeographic Domain, Brazil, and its implications for conservation. Biodivers Conserv 23(1):217–232

    Google Scholar 

  • Auler AS, Piló LB (2015) Caves and mining in Brazil: the dilemma of cave preservation within a mining context. In: Andreo B, Carrasco JJ, Durán F, Jiménez P, LaMoreaux JW (ed) Hydrogeological and environmental investigations in karst systems, 1st edition. Springer, Berlin, pp 487–496

  • Auler AS (2016) Cave protection as a karst conservation tool in the environmentally sensitive Lagoa Santa karst, southeastern Brazil. Acta Carsol 45:131–145

    Google Scholar 

  • Bernard E, Fenton MB (2003) Bat mobility and roosts in a fragmented landscape in central Amazonia, Brazil. Biotropica 35(2):262–277

    Google Scholar 

  • Borges P, Lamelas-Lopez L, Amorim I, Danielczak A, Boieiro M, Rego C, Wallon S, Nunes R, Cardoso P, Hochkirch A (2019) Species conservation profiles of cave-dwelling arthropods from Azores, Portugal. Biodivers Data J 7:e32530

    PubMed  PubMed Central  Google Scholar 

  • Borges PAV, Cardoso P, Amorim IR, Pereira F, Constância JP, Nunes JC, Barcelos P, Costa P, Gabriel R, Dapkevicius MdL (2012) Volcanic caves: priorities for conserving the Azorean endemic troglobiont species. Int J Speleol 41(1):101–112

    Google Scholar 

  • Brasil (2008) Decreto no 6.640, 07 novembro de 2008, dá nova redação aos arts. 1o, 2o, 3o, 4º e 5º e acrescenta os arts. 5-A e 5-B ao Decreto no 99.556, de 1o de outubro de 1990, que dispõe sobre proteção das cavidades naturais subterrâneas existentes no território nacional. Diário Oficial da União 218: 8–9

  • Brasil (2012) Decreto de 5 de junho de 2012. Dispõe sobre a criação do Parque Nacional da Furna Feia, nos municípios de Baraúna e Mossoró, Estado do Rio Grande do Norte. Diário Oficial [da] República Federativa do Brasil, Brasília, DF, 06 jun. 2012

  • Canora F, Fidelibus MD, Sciortino A, Spilotro G (2008) Variation of infiltration rate through karstic surfaces due to land use changes: A case study in Murgia (SE-Italy). Eng Geol 99(3–4):210–227

    Google Scholar 

  • Cavalcanti LF, Lima MF, Medeiros RCS, Meguerditchian I (2012) Plano de ação nacional para a conservação do patrimônio espeleológico nas áreas cársticas da Bacia do Rio São Francisco. Instituto Chico Mendes de Conservação da Biodiversidade, . Acessed 01 July 2019

  • Ceballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human-induced species losses: Entering the sixth mass extinction. Sci Adv 1:1–5

    Google Scholar 

  • Cheeptham N (2013) Advances and challenges in studying cave microbial diversity. In: Cheeptham N (ed) Cave microbiomes: A novel resource for drug discovery. Springer, New York, pp 1–34

    Google Scholar 

  • Chen Y, Jiang Y (2016) The effects of agricultural activities and atmospheric acid deposition on carbonate weathering in a small karstic agricultural catchment, southwest china. Acta Carsologica 45:161–172

    Google Scholar 

  • Christiansen KA (2012) Morphological adaptations. In: White WB, Culver DC (ed) Encyclopedia of caves, 2nd edition, Academic/Elsevier Press, Amsterdam, pp 517–528

  • Culver DC, Pipan T (2019) The biology of caves and other subterranean habitats. Oxford University Press, London

    Google Scholar 

  • Culver DC, Sket B (2000) Hotspots of subterranean biodiversity in caves and wells. Journal of Cave Karst Studies 62:11–17

    Google Scholar 

  • Day MJ, Chenoweth MS (2009) Potential impacts of anthropogenic environmental change on the Caribbean karst. In: Barker B, Dodman D, McGregor D (eds) Global change and Caribbean vulnerability. University of the West Indies Press, Kingston, pp 100–122

    Google Scholar 

  • Day MJ, Koenig S (2002) Cave monitoring priorities in Central America and the Caribbean. Acta Carsologica 30:123–134

    Google Scholar 

  • Day MJ (2007) Natural and anthropogenic hazards in the karst of Jamaica. In: Day MJ, Parise M, Gunn J (eds) Natural and anthropogenic hazards in Karst areas: recognition, analysis, and mitigation. Geological Society, London, p 279

    Google Scholar 

  • Deharveng L, Bedos A (2012) Diversity patterns in the tropics. In: Culver DC, White WB (ed) Encyclopedia of Caves. 2nd edition, pp 238–251

  • Deharveng L, Bedos A, Le Cong K, Le Cong M, Truong Quang T (2009) Endemic arthropods of the Hon Chong hills (Kien Giang), an unrivaled biodiversity heritage in Southeast Asia. Beleaguered Hills: Managing the Biodiversity of the remaining Karst Hills of Kien Giang, Vietnam (ed. by Le Cong K, Truong Quang T, Ly Ngoc S), pp. 31–57

  • Dirzo R, Raven PH (2003) Global state of biodiversity and loss. Annu Rev Environ Resour 28:137–167

    Google Scholar 

  • Dobrovolski R, Loyola R, Rattis L, Gouveia SF, Cardoso D, Santos-Silva R, Gonçalves-Cardoso D, Bini LM, Diniz-Filho JAF (2018) Science and democracy must orientate Brazil’s path to sustainability. Perspectives in Ecology Conservation 16(3):121–124

    Google Scholar 

  • Donato CR, Ribeiro ADS, Souto LDS (2014) A conservation status index, as an auxiliary tool for the management of cave environments. International Journal of Speleology 43:315–322

    Google Scholar 

  • Ducci D, De Masi G, Priscoli GD (2008) Contamination risk of the Alburni karst system (southern Italy). Eng Geol 99(3–4):109–120

    Google Scholar 

  • Elliott WR (2000) Conservation of the North American cave and karst biota. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean Ecosystems, Ecosystems of the World, vol 30. Elsevier, Amsterdam, pp 664–689

    Google Scholar 

  • Faille A, Bourdeau C, Deharveng L (2015) Weak impact of tourism activities on biodiversity in a subterranean hotspot of endemism and its implications for the conservation of cave fauna. Insect Conservation Diversity 8(3):205–215

    Google Scholar 

  • Fattorini S, Fiasca B, Di Lorenzo T, Di Cicco M, Galassi DM (2020) A new protocol for assessing the conservation priority of groundwater-dependent ecosystems. Aquat Conserv Mar Freshw Ecosyst. https://doi.org/10.1002/aqc.3411

  • Fenton MB, Rautenbach IL (1986) A comparison of the roosting and foraging behaviour of three species of African insectivorous bats (Rhinolophidae, Vespertilionidae, and Molossidae). Can J Zool 64(12):2860–2867

    Google Scholar 

  • Ferreira RL (2019) Guano communities. In: Encyclopedia of Caves (pp. 474–484). Academic Press

  • Ferreira RL (2004) A medida da complexidade ecológica e suas aplicações na conservação e manejo de ecossistemas subterrâneos. Universidade Federal de Minas Gerais, Belo Horizonte. 158p.

  • Field MS (1992) Karst hydrology and chemical contamination. J Environ Syst 22(1):1–26

    Google Scholar 

  • Fleury S (2009) Land use policy and practice on karst terrains Living on Limestone. Springer

  • Fonseca CR, Venticinque EM (2018) Biodiversity conservation gaps in Brazil: a role for systematic conservation planning. Perspect Ecol Conserv 16(2):61–67

    Google Scholar 

  • Frumkin A (1999) Interaction between Karst, water, and agriculture over the climatic gradient of Israel. Int J Speleol 28:99–110

    Google Scholar 

  • Gareth EJ, Davies B, Hussain H (2000) Ecological economics: an introduction. Blackwell Science, 272 pagesGillieson D (1986) Cave sedimentation in the New Guinea highlands. Earth Surf Proc Land 11(5):533–543

    Google Scholar 

  • Greenhall AM (1988) Feeding behavior. In: Greenhall AM, Schmidt U (eds) Natural history of vampire bats. CRC Press, Boca Raton, pp 111–113

    Google Scholar 

  • Guimarães MM, Ferreira RL (2015) Morcegos cavernícolas do Brasil: novos registros e desafios para conservação. Rev Bras Espeleol 2:1–33

    Google Scholar 

  • Hoch H, Ferreira R (2016) Iuiuia caeca gen. n., sp. n., a new troglobite planthopper in the family Kinnaridae (Hemiptera, Fulgoromorpha) from Brazil. Deutsche Entomologische Zeitschrift 63:171–181

    Google Scholar 

  • Hoch H, Ferreira RL (2012) Ferricixius davidi gen. n., sp. n.–the first cavernicolous planthopper from Brazil (Hemiptera, Fulgoromorpha, Cixiidae). Deutsche Entomologische Zeitschrift 59(2):201–206

    Google Scholar 

  • Hoch H, Ferreira RL (2013) Potiguara troglobia gen. n., sp. n.–first record of a troglobitic Kinnaridae from Brazil (Hemiptera: Fulgoromorpha). Deutsche Entomologische Zeitschrift 60(1):33–40

    Google Scholar 

  • Iannella M, Fiasca B, Di Lorenzo T, Biondi M, Di Cicco M, Galassi DM (2020) Jumping into the grids: mapping biodiversity hotspots in groundwater habitat types across Europe. Ecography 43:1–17

    Google Scholar 

  • ICMBIO (2012) Portaria Nº 18, DE 17 de fevereiro de 2012 aprova o Plano de Ação Nacional para a Conservação do Patrimônio Espeleológico nas Áreas Cársticas da Bacia do Rio São Francisco - PAN Cavernas do São Francisco, . Acessed 01 July 2019

  • Jaffé R, Prous X, Calux A, Gastauer M, Nicacio G, Zampaulo R, Souza-Filho PWM, Oliveira G, Brandi I, Siqueira JO (2018) Conserving relics from ancient underground worlds: assessing the influence of cave and landscape features on obligate iron cave dwellers from the Eastern Amazon. PeerJ 6:e4531

    PubMed  PubMed Central  Google Scholar 

  • Jiang C, Liu L, Wu JP (2014) A new method determining safe thickness of karst cave roof under pile tip. J Central South Univ 21(3):1190–1196

    Google Scholar 

  • Jong CD, Cappy S, Finckh M et al (2008) A transdisciplinary analysis of water problems in the mountainous karst areas of Morocco. Eng Geol 99(3–4):228–238

    Google Scholar 

  • Keith JH, Bassestt JL, Duwelius JA (1997) Findings from MOU-related karst studies for Indiana State Road 37, Lawrence County, Indiana. In: The engineering geology and hydrogeology of karst terranes. In: 6th Annual Multidisciplinary Conference on Sinkholes, Engineering, and Environmental Impacts. pp 157–171

  • Lucon TN, Costa AT, Galvão P, Leite MGP (2020) Cadmium behavior in a karst environment hydrological cycle. Environmental Science and Pollution Research 1–15

  • Lunghi E, Manenti R, Ficetola GF (2014) Do cave features affect underground habitat exploitation by non-troglobite species? Acta Oecol 55:29–35

    Google Scholar 

  • Mammola S, Amorim IR, Bichuette ME, Borges PA, Cheeptham N, Cooper SJ et al (2020) Fundamental research questions in subterranean biology. Biol Rev 95(6):1855–1872

    PubMed  Google Scholar 

  • Mammola S, Piano E, Cardoso P, Vernon P, Domínguez-Villar D, Culver DC, Pipan T, Isaia M (2019) Climate change going deep: The effects of global climatic alterations on cave ecosystems. Anthropocene Rev 6(1–2):98–116

    Google Scholar 

  • MMA (2009) Portaria N° 358, de 30 de setembro 2009, institui o Programa nacional de conservação do Patrimônio espeleológico. Diário Oficial da União, 188: 63–64

  • Moldovan OT, Bercea S, Nstase-Bucur R, Constantin S, Kenesz M, Mirea IC, Petculescu A, Robu M, Arghir RA (2020) Management of water bodies in show caves – a microbial approach. Tour Manag 78:104037

    Google Scholar 

  • Moretti M, Dias AT, De Bello F, Altermatt F, Chown SL et al (2017) Handbook of protocols for standardized measurement of terrestrial invertebrate functional traits. Funct Ecol 31(3):558–567

    Google Scholar 

  • Nitzu E, Vlaicu M, Giurginca A, Meleg IN, Popa I, Nae A, Baba Ş (2018) Assessing preservation priorities of caves and karst areas using the frequency of endemic cave-dwelling species. Int J Speleol 47:43–52

    Google Scholar 

  • Oliver I, Beattie AJ (1996) Invertebrate morphospecies as surrogates for species: a case study. Conserv Biol 10:99–109

    Google Scholar 

  • Parise M (2011) Some Considerations on show cave management issues in Southern Italy. In: Van Beynen P (ed) Karst Management. Springer, Dordrecht, pp 159–167

    Google Scholar 

  • Parise M, Gunn J (2007) Natural and anthropogenic hazards in karst areas: recognition, analysis, and mitigation. Geological Society of London

  • Pellegrini TG, Ferreira RL (2012) Management in a neotropical show cave: planning for invertebrates conservation. Int J Speleol 41:361–368

    Google Scholar 

  • Pellegrini TG, Sales LP, Aguiar P, Ferreira RL (2016) Linking spatial scale dependence of land-use descriptors and invertebrate cave community composition. Subterranean Biol 5:1–9

    Google Scholar 

  • Piccini L, Di Lorenzo T, Costagliola P, Galassi DMP (2019) Marble Slurry’s Impact on Groundwater: The Case Study of the Apuan Alps Karst Aquifers. Water 11(12):2462

    CAS  Google Scholar 

  • Prous X, Ferreira RL, Jacobi CM (2015) The entrance as a complex ecotone in a Neotropical cave. Int J Speleol 44(2):177–189

    Google Scholar 

  • Rabelo LM, Souza-Silva M, Ferreira RL (2018) Priority caves for biodiversity conservation in a key karst area of Brazil: comparing the applicability of cave conservation indices. Biodivers Conserv 27:2097–2129

    Google Scholar 

  • Ratton P, Mahnert V, Ferreira RL (2012) A new cave-dwelling species of Spelaeobochica (Pseudoscorpiones: Bochicidae) from Brazil. The J Arachnol 40:274–280

    Google Scholar 

  • Reboleira AS, Borges PA, Gonçalves F, Serrano AR, Oromí P (2011) The subterranean fauna of a biodiversity hotspot region-Portugal: an overview and its conservation. Int J Speleol 40(1):23–37

    Google Scholar 

  • Saaty TL (1993) What is relative measurement? The ratio scale phantom. Math Comput Model 17(4–5):1–12

    Google Scholar 

  • Schneider K, Christman MC, Fagan WF (2011) The influence of resource subsidies on cave invertebrates: results from an ecosystem-level manipulation experiment. Ecology 92(3):765–776

    PubMed  Google Scholar 

  • Sendra A, Reboleira ASP (2012) The world’s deepest subterranean community-Krubera-Voronja Cave (Western Caucasus). Int J Speleol 41(2):9

    Google Scholar 

  • Simões MH, Souza-Silva M, Ferreira RL (2014) Cave invertebrates in northwestern Minas Gerais state, Brazil: endemism, threats, and conservation priorities. Acta Carsol 43:159–174

    Google Scholar 

  • Souza MFVR, Ferreira RL (2012) Eukoenenia virgemdalapa (Palpigradi: Eukoeneniidae): a new troglobitic palpigrade from Brazil. Zootaxa 3295(1):59–64

    Google Scholar 

  • Souza LA, Ferreira RL, Senna AR (2015) Amphibious shelter-builder Oniscidea species from the New World with the description of a new subfamily, a new genus, and a new species from Brazilian Cave (Isopoda, Synocheta, Styloniscidae). PLoS ONE10:e0115021

    PubMed  PubMed Central  Google Scholar 

  • Souza M, Ferreira RL (2018) A new highly troglomorphic Loxosceles (Araneae: Sicariidae) from Brazil. Zootaxa 4438(3):575

    PubMed  Google Scholar 

  • Souza-Silva M, Bernardi LFO, Martins RP, Ferreira RL (2012) Transport and consumption of organic detritus in a neotropical limestone cave. Acta Carsol 41:139–150

    Google Scholar 

  • Souza-Silva M, Ferreira RL (2015) Cave invertebrates in Espírito Santo state, Brazil: a primary analysis of endemism, threats, and conservation priorities. Subterranean Biology, (16):79–102

  • Souza-Silva M, Ferreira RL (2016) The first two hotspots of subterranean biodiversity in South America. Subterranean Biol 19:1–21

    Google Scholar 

  • Souza-Silva M, Martins RP, Ferreira RL (2015) Cave conservation priority index to adopt a rapid protection strategy: a case study in Brazilian Atlantic rain forest. Environ Manag 55:279–295

    Google Scholar 

  • Souza-Silva M, Martins RP, Ferreira RL (2011) Trophic dynamics in a neotropical limestone cave. Subterranean Biol 9:127–138

    Google Scholar 

  • Souza-Silva M, Ratton P, Zampaulo RA, Ferreira RL (2017) Is an outstanding environment always preserved? When the most diverse cave in subterranean species becomes one of the most endangered in a landscape. Rev Bras Espeleol 2(8):26–48

    Google Scholar 

  • Strona G, Fattorini S, Fiasca B, Di Lorenzo T, Di Cicco M, Lorenzetti W, Boccacci F, Galassi DMP (2019) AQUALIFE software: A new tool for a standardized ecological assessment of groundwater dependent ecosystems. Water 11(12):2574

    Google Scholar 

  • Sugai LSM, Ochoa-Quintero JM, Costa-Pereira R, Roque FO (2015) Beyond aboveground. Biodivers Conserv 24:2109–2112

    Google Scholar 

  • Tanalgo KC, Tabora JAG, Hughes AC (2018) Bat cave vulnerability index (BCVI): a holistic rapid assessment tool to identify priorities for effective cave conservation in the tropics. Ecol Ind 89:852–860

    Google Scholar 

  • Tihansky AB (1999) Sinkholes, west-central Florida. Land subsidence in the United States. US Geol Surv Circ 1182:121–140

    Google Scholar 

  • Trajano E, Gallão JE, Bichuette ME (2016) Spots of high diversity of troglobites in Brazil: the challenge of measuring subterranean diversity. Biodivers Conserv 25:1805–1828

    Google Scholar 

  • Trevelin LC, Silveira M, Port-Carvalho M, Homem DH, Cruz-Neto AP (2013) Use of space by frugivorous bats (Chiroptera: Phyllostomidae) in a restored Atlantic forest fragment in Brazil. For Ecol Manag 291:136–143

    Google Scholar 

  • Tscharntke T, Steffan-Dewenter I, Kruess A, Thies C (2002) Characteristics of insect populations on habitat fragments: a mini-review. Ecol Res 17:229–239

    Google Scholar 

  • Turner MG, Gardner RH, O’Neill RV (2001) Landscape ecology in theory and practice. New York. Springer Verlag, 401 pages.Van Beynen PE (2011) Karst management. Springer, New York

  • Van Beynen PE, Townsend K (2005) A disturbance index for karst environments. Environ Manag 36(1):101–116

    Google Scholar 

  • Van Beynen PE, Van Beynen KM (2011) Human disturbance of karst environments. In: van Beynen PE (ed) Karst management. Springer, Dordrecht, pp 379–397

    Google Scholar 

  • Vasconcelos ACO, Ferreira RL (2016) Description of two new species of Charinus Simon, 1892 from Brazilian caves with remarks on conservation (Arachnida: Amblypygi: Charinidae). Zootaxa 4072:185–202

    PubMed  Google Scholar 

  • Watson J, Hamilton-Smith E, Gillieson D, Kiernan K (1997) Guidelines for Cave and Karst Protection: IUCN World Commission on Protected Areas. IUCN Protected Area Programme Series

  • Wynne JJ, Howarth FG, Sommer S, Dickson BG (2019) Fifty years of cave arthropod sampling: techniques and best practices. International Journal of Speleology 48(1):4. https://doi.org/10.5038/1827-806X.48.1.2231

    Article  Google Scholar 

Download references

Acknowledgements

Rafael Costa Cardoso was sponsored by FAPEMIG (Fundação de Amparo à Pesquisa do Estado de Minas Gerais) with a 24 months grant. This paper is part of his master thesis on Ecology at Universidade Federal de São João del-Rei. The authors are grateful to the Study Center in Subterranean Biology (CEBS) team, who helped in field samples, the farmers of the Iuiú and Malhada municipality (Joãozinho, Tião, Chico, and Honorato), and the Speleological Excursionist Society (SEE) who discovered the caves. We also thank the VALE/SA company for all support provided to CEBS/UFLA. RLF is grateful to the National Council of Technological and Scientific Development (CNPq) for research grant n. 308334/2018-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marconi Souza-Silva.

Additional information

Communicated By P. Ponel.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardoso, R.C., Ferreira, R.L. & Souza-Silva, M. Priorities for cave fauna conservation in the Iuiú karst landscape, northeastern Brazil: a threatened spot of troglobitic species diversity. Biodivers Conserv 30, 1433–1455 (2021). https://doi.org/10.1007/s10531-021-02151-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-021-02151-5

Keywords

Navigation