Skip to main content

Advertisement

Log in

Drivers of primate richness and occurrence in a naturally patchy landscape in the Brazilian Amazon

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

We assessed the spatial extent at which the species-landscape relationship is strongest (i.e. the scale of effect—SE) on primate occurrence (Alouatta belzebul, Saguinus midas, Saimiri sciureus, and Sapajus apella and Cebus olivaceus, the last two considered together in the analysis) and species richness and evaluated which landscape, patch, and human variables influence primate distribution in a savanna ecosystem in Brazil. We used nested buffers to measure the landscape attributes, and used these data to assess the SE of the species-landscape relationships. We explored the relative contributions of landscape, patch, and human variables to species richness and occurrences by using Generalized Linear Mixed Models and logistic regression. We found that the SE did not differ between primates, but did between two regions with different matrix composition. At the landscape level, occurrence of all species was higher as the distance to the nearest block of continuous forest decreased, but was lower as the amount of water bodies and anthropogenic cover in the matrix increased. The occurrence of S. apella, C. olivaceus and A. belzebul was positively related to forest cover, and all species but A. belzebul had higher occurrence in taller forest. The occurrence of S. apella, C. olivaceus and A. belzebul decreased closer to the city, and S. apella and C. olivaceus presence increased with the number of residents. Richness was negatively related to the number of residents and anthropogenic cover, but positively to forest height. We concluded that conservation planning for primates should follow a “functional landscape” perspective, by maintaining higher forest cover and minimizing the anthropogenic alterations in the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson J, Rowcliffe JM, Cowlishaw G (2007) Does the matrix matter? a forest primate in a complex agricultural landscape. Biol Conserv 135(2):212–222

    Google Scholar 

  • Andresen E, Arroyo-Rodríguez V, Ramos-Robles M (2018) Primate seed dispersal: old and new challenges. Int J Primatol 39(3):443–465

    Google Scholar 

  • Anzures-Dadda A, Manson RH (2007) Patch- and landscape-scale effects on howler monkey distribution and abundance in rainforest fragments. Anim Conserv 10(1):69–76

    Google Scholar 

  • Arroyo-Rodríguez V, Fahrig L (2014) Why is a landscape perspective important in studies of primates? Am J Primatol 76(10):901–909

    PubMed  Google Scholar 

  • Arroyo-Rodríguez V, Mandujano S, Benítez-Malvido J (2008) Landscape attributes affecting patch occupancy by Howler Monkeys (Alouatta palliata mexicana) at Los Tuxtlas, Mexico. Am J Primatol 70(1):69–77

    PubMed  Google Scholar 

  • Arroyo-Rodríguez V, Rojas C, Saldaña-Vázquez RA, Stoner KE (2016) Landscape composition is more important than landscape configuration for Phyllostomid bat assemblages in a fragmented biodiversity hotspot. Biol Conserv 198:84–92

    Google Scholar 

  • Baldwin JD, Baldwin JI (1981) The Squirrel Monkeys, genus Saimiri. In: Coimbra-Filho AF, Mittermeier RA (eds) Ecology and behavior of Neotropical primates. Academia Brasileira de Ciências, Rio de Janeiro, pp 277–330

    Google Scholar 

  • Bartoń K (2018) MuMIn: multi-model inference. R package version 1.42.1. https://cran.r-project.org/web/packages/MuMIn/index.html. Accessed 24 January 2019

  • Bates D, Maechler M, Bolker B, Walker S, Christensen RHB, Singmann H, Dai B et al (2018) lme4: linear mixed-effects models using ‘eigen’ and S4. R package version 1.1–19. https://cran.r-project.org/web/packages/lme4/index.html. Accessed 21 January 2019

  • Benchimol M, Peres CA (2013) Anthropogenic modulators of species–area relationships in Neotropical primates: a continental-scale analysis of fragmented forest landscapes. Divers Distrib 19(11):1339–1352

    Google Scholar 

  • Benchimol M, Peres CA (2014) Predicting primate local extinctions within “real-world” forest fragments: a pan-Neotropical analysis. Am J Primatol 76(3):289–302

    PubMed  Google Scholar 

  • Benchimol M, Venticinque EM (2014) Responses of primates to landscape change in Amazonian land-bridge islands–a multi-scale analysis. Biotropica 46(4):470–478

    Google Scholar 

  • Bezerra B, Bicca-Marques J, Miranda J, Mittermeier RA, Oliveira L, Pereira D, Ruiz-Miranda C et al (2018) Callithrix jacchus. The IUCN Red List of Threatened Species 2018: e.T41518A17936001. https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T41518A17936001.en. Accessed 11 July 2019

  • Bjørnstad ON, Cai J (2018) ncf: spatial covariance functions. R package version 1.2–6. https://cran.r-project.org/web/packages/ncf/index.html. Accessed 26 Dec 2018

  • Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White J-SS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24(3):127–135

    PubMed  Google Scholar 

  • Bolt LM, Schreier AL, Voss KA, Sheehan EA, Barrickman NL, Pryor NP, Barton MC (2018) The influence of anthropogenic edge effects on primate populations and their habitat in a fragmented rainforest in Costa Rica. Primates 59(3):301–311

    PubMed  Google Scholar 

  • Bonvicino CR (1989) Ecologia e comportamento de Alouatta belzebul (Primates: Cebidae) na Mata Atlântica. Rev Nordestina Biol 6(2):149–179

    Google Scholar 

  • Boubli J-P, Di Fiore A, Mittermeier RA (2008) Alouatta macconnelli. The IUCN Red List of Threatened Species 2008: e.T40642A10347360. https://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T40642A10347360.en. Accessed 11 July 2019

  • Boyle SA, Smith AT (2010) Can landscape and species characteristics predict primate presence in forest fragments in the Brazilian Amazon? Biol Conserv 143(5):1134–1143

    Google Scholar 

  • Buchanan DB, Mittermeier RA, van Roosmalen MGM (1981) The Saki Monkeys, genus Pithecia. In: Coimbra-Filho AF, Mittermeier RA (eds) Ecology and behavior of Neotropical primates. Academia Brasileira de Ciências, Rio de Janeiro, pp 391–417

    Google Scholar 

  • Burnham KP (2015) Multimodel inference: understanding AIC relative variable importance values. Colorado State University. https://sites.warnercnr.colostate.edu/kenburnham/wp-content/uploads/sites/25/2016/08/VARIMP.pdf. Accessed 3 July 2019

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New York

    Google Scholar 

  • Calle-Rendón BR, Hilário RR, de Toledo JJ (2019) Effect of site attributes and matrix composition on Neotropical primate species richness and functional traits: a comparison among regions. Diversity 11(5):83

    Google Scholar 

  • Calle-Rendón BR, Moreno F, Hilário RR (2018) Vulnerability of mammals to land-use changes in Colombia’s post-conflict era. Nat Conserv 29:79–92

    Google Scholar 

  • Camino M, Thompson J, Andrade L, Cortez S, Matteucci SD, Altrichter M (2020) Using local ecological knowledge to improve large terrestrial mammal surveys, build local capacity and increase conservation opportunities. Biol Conserv 1:108450

    Google Scholar 

  • Cardillo M, Purvis A, Sechrest W, Gittleman JL, Bielby J, Mace GM (2004) Human population density and extinction risk in the world’s carnivores. PLoS Biol 2(7):e197

    PubMed  PubMed Central  Google Scholar 

  • Carrara E, Arroyo-Rodríguez V, Vega-Rivera JH, Schondube JE, de Freitas SM, Fahrig L (2015) Impact of landscape composition and configuration on forest specialist and generalist bird species in the fragmented Lacandona rainforest, Mexico. Biol Conserv 184:117–126

    Google Scholar 

  • Carretero-Pinzón X (2010) Uso de cercas vivas como corredores biológicos por primates en los Llanos Orientales. In: Pereira-Bengoa V, Stevenson PR, Bueno ML, Nassar-Montoya F (eds) Primatología en Colombia: avances al principio del milenio. Fundación Universitaria San Martín, Bogotá, pp 91–97

    Google Scholar 

  • Carretero-Pinzón X (2013) An eight-year life history of a primate community in the Colombian Llanos. In: Marsh LK, Chapman CA (eds) Primates in fragments: complexity and resilience. Springer, New York, pp 159–182

    Google Scholar 

  • Carretero-Pinzón X, Defler TR, McAlpine CA, Rhodes JR (2017) The influence of landscape relative to site and patch variables on primate distributions in the Colombian Llanos. Landsc Ecol 32(4):883–896

    Google Scholar 

  • Carvalho WD, Mustin K (2017) The highly threatened and little known Amazonian savannahs. Nat Ecol Evol 1:0100

    Google Scholar 

  • Chapman CA, Bonnell TR, Gogarten JF, Lambert JE, Omeja PA, Twinomugisha D, Wasserman MD et al (2013) Are primates ecosystem engineers? Int J Primatol 34(1):1–14

    Google Scholar 

  • Coelho M, Juen L, Mendes-Oliveira NA (2014) The role of remnants of Amazon savanna for the conservation of Neotropical mammal communities in eucalyptus plantations. Biodivers Conserv 23(13):3171–3184

    Google Scholar 

  • Cormier L (2006) A preliminary review of Neotropical primates in the subsistence and symbolism of indigenous lowland South American peoples. Ecol Environ Anthropol 2(1):14–32

    Google Scholar 

  • Cortés-Ortiz BE, Rico C, Rodríguez-Luna E, Sampaio I, Ruiz-García M (2003) Molecular systematics and biogeography of the Neotropical monkey genus, Alouatta. Mol Phylogenet Evol 26(1):64–81

    PubMed  Google Scholar 

  • Curtis PG, Slay CM, Harris NL, Tyukavina A, Hansen MC (2018) Classifying drivers of global forest loss. Science 361(6407):1108–1111

    CAS  PubMed  Google Scholar 

  • da Silva LG, Ribeiro MC, Hasui E, da Costa CA, da Cunha RGT (2015) Patch size, functional isolation, visibility and matrix permeability influences. Neotropical primate occurrence within highly fragmented landscapes. PLoS ONE 10(2):e0114025

    PubMed  PubMed Central  Google Scholar 

  • Day RT, Elwood RW (1999) Sleeping site selection by the Golden-handed Tamarin Saguinus midas midas: the role of predation risk, proximity to feeding sites, and territorial defence. Ethology 105(12):1035–1051

    Google Scholar 

  • Defler TR (2010) Historia natural de los primates Colombianos. Universidad Nacional de Colombia and Conservación Internacional, Bogotá

    Google Scholar 

  • Drubbel RV, Gautier J-P (1993) On the occurrence of nocturnal and diurnal loud calls, differing in structure and duration, in Red Howlers (Alouatta seniculus) of French Guyana. Folia Primatol 60:195–209

    CAS  PubMed  Google Scholar 

  • Emmons LH, Whitney BM, Ross DL (1997) Sounds of Neotropical rainforest mammals: an audio field guide. Library of natural sounds (CD), Cornell Laboratory of Ornithology.

  • Estrada A, Garber PA, Rylands AB, Roos C, Fernandez-Duque E, DiFiore A, Nekaris KAI et al (2017) Impending extinction crisis of the world’s primates: why primates matter. Sci Adv 3(1):e1600946

    PubMed  PubMed Central  Google Scholar 

  • Fahrig L (2005) When is a landscape perspective important? In: Wiens JA, Moss MR (eds) Issues and perspectives in landscape ecology. Cambridge University Press, Cambridge, pp 3–10

    Google Scholar 

  • Fahrig L (2013) Rethinking patch size and isolation effects: the habitat amount hypothesis. J Biogeogr 40(9):1649–1663

    Google Scholar 

  • Fahrig L, Merriam G (1994) Conservation of fragmented populations. Conserv Biol 8(1):50–59

    Google Scholar 

  • Fox J, Weisberg S, Price B, Adler D, Bates D, Baud-Bovy G, Bolker B et al (2018) car: Companion to Applied Regression. R package version 3.0-2. https://cran.r-project.org/web/packages/car/index.html. Accessed 24 Jan 2019

  • Freese CH, Oppenheimer JR (1981) The Capuchin Monkeys, genus Cebus. In: Coimbra-Filho AF, Mittermeier RA (eds) Ecology and behavior of Neotropical primates. Academia Brasileira de Ciências, Rio de Janeiro, pp 331–390

    Google Scholar 

  • Freitas CH, Setz EZF, Araújo ARB, Gobbi N (2008) Agricultural crops in the diet of bearded Capuchin Monkeys, Cebus libidinosus Spix (Primates: Cebidae), in forest fragments in southeast Brazil. Rev Bras Zool 25(1):32–39

    Google Scholar 

  • Furley PA (1999) The nature and diversity of Neotropical savanna vegetation with particular reference to the Brazilian cerrados. Global Ecol Biogeogr 8(3–4):223–241

    Google Scholar 

  • Galán-Acedo C, Arroyo-Rodríguez V, Andresen E, Arregoitia LV, Vega E, Peres CA, Ewers RM (2019a) The conservation value of human-modified landscapes for the world’s primates. Nat Commun 10:152

    PubMed  PubMed Central  Google Scholar 

  • Galán-Acedo C, Arroyo-Rodríguez V, Cudney-Valenzuela SJ, Fahrig L (2019b) A global assessment of primate responses to landscape structure. Biol Rev 94(5):1605–1618

    Google Scholar 

  • Galán-Acedo C, Arroyo-Rodríguez V, Estrada A, Ramos-Fernández G (2018) Drivers of the spatial scale that best predict primate responses to landscape structure. Ecography 41(12):2027–2037

    Google Scholar 

  • Galán-Acedo C, Arroyo-Rodríguez V, Estrada A, Ramos-Fernández G (2019c) Forest cover and matrix functionality drive the abundance and reproductive success of an endangered primate in two fragmented rainforests. Landsc Ecol 34(1):147–158

    Google Scholar 

  • Gamer M, Lemon J, Fellows I, Singh P (2012) irr: various coefficients of interrater reliability and agreement. R package version 0.84. https://cran.r-project.org/web/packages/irr/index.html. Accessed 26 Dec 2018

  • Garmendia A, Arroyo-Rodríguez V, Estrada A, Naranjo EJ, Stoner KE (2013) Landscape and patch attributes impacting medium- and large-sized terrestrial mammals in a fragmented rain forest. J Trop Ecol 29(4):331–344

    Google Scholar 

  • Gestich CC, Arroyo-Rodríguez V, Ribeiro MC, da Cunha RGT, Setz EZF (2018) Unraveling the scales of effect of landscape structure on primate species richness and density of Titi Monkeys (Callicebus nigrifrons). Ecol Res 34(1):150–159

    Google Scholar 

  • Gouveia SF, Villalobos F, Dobrovolski R, Beltrão-Mendes R, Ferrari SF (2014) Forest structure drives global diversity of primates. J Anim Ecol 83(6):1523–1530

    PubMed  Google Scholar 

  • Graham TL, Matthews HD, Turner SE (2016) A global-scale evaluation of primate exposure and vulnerability to climate change. Int J Primatol 37(2):158–174

    Google Scholar 

  • Hanzki I, Gyllenberg M (1993) Two general metapopulation models and the core-satellite species hypothesis. Am Nat 142(1):17–41

    Google Scholar 

  • Heinze G, Schemper M (2002) A solution to the problem of separation in logistic regression. Stat Med 21(16):2409–2419

    PubMed  Google Scholar 

  • Heinze G, Ploner M, Dunkler D, Southworth H (2018) logistf: firth’s bias-reduced logistic regression. R package version 1.23. https://cran.r-project.org/web/packages/logistf/index.html. Accessed 19 July 2019

  • Hilário RR, de Toledo JJ, Mustin K, Castro IJ, Costa-Neto SV, Kauano EE, Eilers V et al (2017) The fate of an Amazonian savanna: government land-use planning endangers sustainable development in Amapá, the most protected Brazilian state. Trop Conserv Sci 10:1–8

    Google Scholar 

  • Hoffmann WA, Orthen B, do Nascimento TKV (2003) Comparative fire ecology of tropical savanna and forest trees. Funct Ecol 17(6):720–726

    Google Scholar 

  • IBGE (2019) Censo Demográfico 2010: IBGE. https://mapasinterativos.ibge.gov.br/grade/default.html. Accessed 15 June 2019

  • Jackson HB, Fahrig L (2012) What size is a biologically relevant landscape? Lands Ecol 27(7):929–941

    Google Scholar 

  • Jackson HB, Fahrig L (2015) Are ecologists conducting research at the optimal scale? Glob Ecol Biogeogr 24(1):52–63

    Google Scholar 

  • Jerozolimski A, Peres CA (2003) Bringing home the biggest bacon: a cross-site analysis of the structure of hunter-kill profiles in Neotropical forests. Biol Conserv 111(3):415–425

    Google Scholar 

  • Johnson ET, Benítez ME, Fuentes A, McLean CR, Norford AB, Ordoñez JC, Beehner JC, Bergman TJ (2020) High density of white-faced capuchins (Cebus capucinus) and habitat quality in the Taboga Forest of Costa Rica. Am J Primatol 82(2):e23096

    Google Scholar 

  • Julliot C, Sabatier D (1993) Diet of the Red Howler Monkey (Alouatta seniculus) in French Guiana. Int J Primatol 14(4):527–550

    Google Scholar 

  • Laurance WF, Ferreira L, Rankin-de Merona J, Laurance SGW (1998) Rain forest fragmentation and the dynamics of Amazonian tree communities. Ecology 79(6):2032–2040

    Google Scholar 

  • Laurance WF, Albernaz AKM, Schroth G, Fearnside PM, Bergen S, Venticinque EM, da Costa C (2002) Predictors of deforestation in the Brazilian Amazon. J Biogeogr 29(5–6):737–748

    Google Scholar 

  • Laurance WF, Nascimento HEM, Laurance SG, Andrade AC, Fearnside PM, Ribeiro JEL (2006) Rain forest fragmentation and the proliferation of successional trees. Ecology 87(2):469–482

    PubMed  Google Scholar 

  • Laurance WF, Goosem M, Laurance SGW (2009) Impacts of roads and linear clearings on tropical forests. Trends Ecol Evol 24(12):659–669

    PubMed  Google Scholar 

  • Lawes MJ, Mealin PE, Piper SE (2000) Patch occupancy and potential metapopulation dynamics of three forest mammals in fragmented Afromontane forest in south Africa. Conserv Biol 14(4):1088–1098

    Google Scholar 

  • Lenz BB, Jack KM, Spironello WR (2014) Edge effects in the primate community of the biological dynamics of forest fragments project, Amazonas, Brazil. Am J Phys Anthropol 155(3):436–446

    PubMed  Google Scholar 

  • Lewis SL, Edwards DP, Galbraith D (2015) Increasing human dominance of tropical forests. Science 349(6250):827–832

    CAS  PubMed  Google Scholar 

  • Lima EM, Ferrari SF (2003) Diet of a free-ranging group of Squirrel Monkeys (Saimiri sciureus) in eastern Brazilian Amazonia. Folia Primatol 74(3):150–158

    PubMed  Google Scholar 

  • Lima P (2003) Antropización, dinámicas de ocupación del territorio y desarrollo en la Amazonía brasileña: el caso del estado de Amapá. Dissertation, Universitat Autònoma de Barcelona

  • Liu J, Coomes DA, Hu G, Liu J, Yu J, Luo Y, Yu M (2019) Larger fragments have more late-successional species of woody plants than smaller fragments after 50 years of secondary succession. J Ecol 107(2):582–659

    Google Scholar 

  • Livingston G, Philpott SM, Rodriguez AM (2013) Do species sorting and mass effects drive assembly in tropical agroecological landscape mosaics? Biotropica 45(1):10–17

    Google Scholar 

  • Martínez-Martí C, Jiménez-Franco MV, Royle JA, Palazón JA, Calvo JF (2016) Integrating occurrence and detectability patterns based on interview data: a case study for threatened mammals in Equatorial Guinea. Sci Rep 6:33838

    PubMed  PubMed Central  Google Scholar 

  • Melo FPL, Arroyo-Rodríguez V, Fahrig L, Martínez-Ramos M, Tabarelli M (2013) On the hope for biodiversity-friendly tropical landscapes. Trends Ecol Evol 28(8):462–468

    PubMed  Google Scholar 

  • Melo GL, Sponchiado J, Cáceres NC, Fahrig L (2017) Testing the habitat amount hypothesis for South American small mammals. Biol Conserv 209:304–314

    Google Scholar 

  • Michalski F, Peres CA (2005) Anthropogenic determinants of primate and carnivore local extinctions in a fragmented forest landscape of southern Amazonia. Biol Conserv 124(3):383–396

    Google Scholar 

  • Miguet P, Jackson HB, Jackson ND, Martin AE, Fahrig L (2016) What determines the spatial extent of landscape effects on species? Landsc Ecol 31(6):1177–1194

    Google Scholar 

  • Miller LE (1996) The behavioral ecology of wedge-capped capuchin monkeys (Cebus olivaceus). In: Norconk MA, Rosenberger AL, Garber PA (eds) Adaptive radiations of Neotropical primates. Springer, New York, pp 271–288

    Google Scholar 

  • Mittermeier RA, Roosmalen MGM (1981) Preliminary observation on habitat utilization and diet in eight Surinam monkeys. Folia Primatol 36(1–2):1–39

    CAS  PubMed  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. Trends Ecol Evol 10(2):58–62

    CAS  PubMed  Google Scholar 

  • Mustin K, Carvalho WD, Hilário RR, Costa-Neto SV, Silva CR, Vasconcelos IM, Castro IJ et al (2017) Biodiversity, threats and conservation challenges in the Cerrado of Amapá, an Amazonian savanna. Nat Conserv 22:107–127

    Google Scholar 

  • Nakagawa S, Schielzeth HA (2013) A general and simple method for obtaining R2 from generalized linear mixed-effects models. Method Ecol Evol 4(2):133–142

    Google Scholar 

  • Naranjo EJ, Bodmer RE (2007) Source–sink systems and conservation of hunted ungulates in the Lacandon Forest. Mexico Biol Conserv 138(3–4):412–420

    Google Scholar 

  • Oliveira DAG, Ades C (2004) Long-distance calls in Neotropical primates. An Acad Bras Ciênc 76(2):393–398

    PubMed  Google Scholar 

  • Oliveira JMS, Lima MG, Bonvincino C, Ayres JM, Fleagle JG (1985) Preliminary notes on the ecology and behavior of the Guianan Saki (Pithecia pithecia, Linnaeus 1766, Cebidae, Primate). Acta Amazonica 15(1–2):249–263

    Google Scholar 

  • Parathian HE, Maldonado AM (2010) Human–nonhuman primate interactions amongst Tikuna people: perceptions and local initiatives for resource management in Amacayacu in the Colombian Amazon. Am J Primatol 72(10):855–865

    PubMed  Google Scholar 

  • Parks SA, Harcourt AH (2002) Reserve size, local human density, and mammalian extinctions in U.S. protected areas. Conserv Biol 16(3):800–808

    Google Scholar 

  • Peres CA (1993) Structure and spatial organization of an Amazonian terra firme forest primate community. J Trop Ecol 9(3):259–276

    Google Scholar 

  • Peres CA (1997) Effects of habitat quality and hunting pressure on arboreal folivore densities in Neotropical forests: a case study of howler monkeys (Alouatta spp.). Folia Primatol 68(3–5):199–222

    Google Scholar 

  • Peres CA, Dolman PM (2000) Density compensation in Neotropical primate communities: evidence from 56 hunted and nonhunted Amazonian forests of varying productivity. Oecologia 122(2):175–189

    CAS  PubMed  Google Scholar 

  • Pinto ACB, Azevedo-Ramos C, Carvalho O (2003) Activity patterns and diet of the howler monkey Alouatta belzebul in areas of logged and unlogged forest in Eastern Amazonia. Anim Biodiv Conserv 26(2):39–49

    Google Scholar 

  • Piña TEM, Carvalho WD, Rosalino LMC, Hilário RR (2019) Drivers of mammal richness, diversity and occurrence in heterogeneous landscapes composed by plantation forests and natural environments. Forest Ecol Manag 449:117467

    Google Scholar 

  • Poorter L, Bongers F (2006) Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87(7):1733–1743

    PubMed  Google Scholar 

  • Puig-Lagunes AA, Canales-Espinosa D, Rangel-Negrín A, Dias PAD (2016) The influence of spatial attributes on fragment occupancy and population structure in the Mexican Mantled Howler (Alouatta palliata mexicana). Int J Primatol 37(6):656–670

    Google Scholar 

  • Rabelo RM, Aragón S, Bicca-Marques JC, Nelson BW (2019) Habitat amount hypothesis and passive sampling explain mammal species composition in Amazonian river islands. Biotropica 51(1):84–92

    Google Scholar 

  • R Core Team (2018) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/. Accessed 22 Oct 2018

  • Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M et al (2019) pROC: Display and Analyze ROC Curves. R package version 1.15.0. https://cran.r-project.org/web/packages/pROC/index.html. Accessed 19 July 2019

  • Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Annu Rev Ecol Syst 28:517–544

    Google Scholar 

  • Silva CR, Martins ACM, Castro IJ, Bernard E, Cardoso EM, Lima DS, Gregorin R et al (2013) Mammals of Amapá state, eastern Brazilian Amazonia: a revised taxonomic list with comments on species distributions. Mammalia 77(4):409–424

    Google Scholar 

  • Silvestre SM, Calle-Rendón BR, de Toledo JJ, Hilário RR (2020) Drivers of hunting in the savannas of Amapá: implications for conservation. Oryx. https://doi.org/10.1017/S0030605319000085

    Article  Google Scholar 

  • Snowdon CT, Soini P (1988) The Tamarins, genus Saguinus. In: Mittermeier RA, Rylands AB, Coimbra-Filho A, Fonseca GAB (eds) Ecology and behavior of neotropical primates. World Wildlife Fund, Washington, pp 223–298

    Google Scholar 

  • Spagnoletti N, Cardoso TCM, Fragaszy D, Izar P (2017) Coexistence between humans and Capuchins (Sapajus libidinosus): comparing observational data with farmers’ perceptions of crop losses. Int J Primatol 38(2):243–262

    Google Scholar 

  • Tavares JPN (2014) Características da climatologia de Macapá-AP. Caminhos Geogr 15(50):138–151

    Google Scholar 

  • Tee SL, Samantha LD, Kamarudin N, Akbar Z, Lechner AM, Ashton-Butt A, Azhar A (2018) Urban forest fragmentation impoverishes native mammalian biodiversity in the tropics. Ecol Evol 8(24):12506–12521

    PubMed  PubMed Central  Google Scholar 

  • Thompson K, Jones A (1999) Human population density and prediction of local plant extinction in Britain. Conserv Biol 13(1):185–189

    Google Scholar 

  • Urquiza-Haas T, Peres CA, Dolman PM (2009) Regional scale effects of human density and forest disturbance on large-bodied vertebrates throughout the Yucatán Peninsula, Mexico. Biol Conserv 142(1):134–148

    Google Scholar 

  • Valença-Montenegro MM, Carvalho A, Cortes-Ortíz L, Fialho M, Jerusalinsky L, Melo F, Mittermeier RA, Ravetta A, Régis T, Talebi M, Veiga LM (2019) Alouatta belzebul. The IUCN Red list of threatened species 2019: e.T39957A17925370. https://dx.doi.org/10.2305/IUCN.UK.2019-3.RLTS.T39957A17925370.en. Accessed 19 March 2020

  • Valença-Montenegro MM, Fialho MS, Carvalho AS, Ravetta AL, Régis T, de Melo FR, Veiga LM (2012) Avaliação do risco de extinção de Alouatta belzebul (Linnaeus, 1766) no Brasil. Processo de avaliação do risco de extinção da fauna brasileira. ICMBio. https://www.icmbio.gov.br/portal/biodiversidade/fauna-brasileira/lista-de-especies/7171-mamiferos-alouatta-belzebul-guariba-de-maos-ruivas.html. Accessed 11 July 2019

  • Zhang S-Y (1995) Activity and ranging patterns in relation to fruit utilization by Brown Capuchins (Cebus apella) in French Guiana. Int J Primatol 16(3):489–507

    Google Scholar 

Download references

Acknowledgements

This study has been supported by the Conservation Leadership Programme (02327917), The Rufford Foundation (22322-1), Idea Wild (CALLBRAZ0916), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES: scholarships to RRH—process: 88881.314420/2019-01—and BRCR). The authors are extremely grateful to local people who agreed to participate in the study and provided the data used in this study. We also thank the local communities in the Savannas of Amapá for logistical support in the field. We thank an anonymous reviewer for the comments, which significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bayron R. Calle-Rendón.

Additional information

Communicated by Stephen Garnett.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 352 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calle-Rendón, B.R., de Toledo, J.J., Mustin, K. et al. Drivers of primate richness and occurrence in a naturally patchy landscape in the Brazilian Amazon. Biodivers Conserv 29, 3369–3391 (2020). https://doi.org/10.1007/s10531-020-02028-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-020-02028-z

Keywords

Navigation