Skip to main content

Advertisement

Log in

Assessing the vulnerability of Oak (Quercus) forest ecosystems under projected climate and land use land cover changes in Western Himalaya

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The current study focuses on the impacts of projected climate change scenarios and land change dynamics on the suitable habitat of some dominant Oak species (Quercus leucotrichophora, Quercus semecarpifolia, and Quercus floribunda) in western Himalaya. Two IPCC AR5 climate change scenarios viz. RCP 4.5 and RCP 8.5 from a suite of Global Climate Models best suited for Himalaya were used to model the changes in the suitable bioclimatic envelop of these Oak species in the western Himalayas for their probability current distributions and potential future distributions (2070) with the help of ensemble modelling in R platform. The formations of projected distribution areas for these species under climate change exhibits a north-eastward shift and a significant decrease in their climatic niche under projected climate change across both RCP’s, with RCP 4.5 showing increased loss of climatic niche (fundamental niche) of Oak species compared to RCP 8.5. The study also captures the footprints of current and projected land use land cover dynamics on the current and future distribution ranges of each Oak species in Western Himalaya which is observed to adversely affect the Oak forests by further reducing the extent of their realised niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anderson JR (1976) A land use and land cover classification system for use with remote sensor data (vol 964). US Government Printing Office

  • Araújo MB, Peterson AT (2012) Uses and misuses of bioclimatic envelope modeling. Ecology 93:1527–1539

    Article  PubMed  Google Scholar 

  • Araújo MB, Pearson RG, Thuiller W, Erhard M (2005) Validation of species—climate impact models under climate change. Glob Change Biol 11:1504–1513

    Article  Google Scholar 

  • Babu KVS, Roy A, Prasad PR (2016) Forest fire risk modeling in Uttarakhand Himalaya using TERRA satellite datasets. Eur J Remote Sens 49:381–395

    Article  Google Scholar 

  • Balci Y, Halmschlager E (2003) Incidence of Phytophthora species in Oak forests in Austria and their possible involvement in Oak decline. For Pathol 33:157–174

    Article  Google Scholar 

  • Berger AL, Pietra VJD, Pietra SAD (1996) A maximum entropy approach to natural language processing. Comput Linguist 22:39–71

    Google Scholar 

  • Bhandari BS (2003) Blue pine (Pinus wallichiana) forest stands of Garhwal Himalaya: composition, population structure and diversity. J Trop For Sci 15:26–36

    Google Scholar 

  • Bhandari BS, Mehta JP, Semwal RL (2012) Forest Fire in Uttarakhand Himalaya: An Overview. Glimpses Of Forestry Research In The Indian Himalayan Region, 167

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth, Belmont, California

    Google Scholar 

  • Busby J (1991a) BIOCLIM-a bioclimate analysis and prediction system. Plant protection quarterly (Australia)

  • Busby JR (1991b) A bioclimatic analysis and prediction system. In: Margules CR, Austin MP (eds) Nature conservation: cost effective biological surveys and data analysis. CSIRO, Melbourne, pp 64–68

    Google Scholar 

  • Capinha C, Leung B, Anastácio P (2011) Predicting worldwide invasiveness for four major problematic decapods: an evaluation of using different calibration sets. Ecography 34:448–459

    Article  Google Scholar 

  • Champion SH, Seth SK (1968) A revised survey of the forest types of India. A revised survey of the forest types of India. CSIRO, Melbourne

    Google Scholar 

  • Criddle RS, Hopkin MS, McArthur ED, Hansen LD (1994) Plant distribution and the temperature coefficient of metabolism. Plant, Cell Environ 17:233–243

    Article  Google Scholar 

  • Dadhwal KS, Narain P, Dhyani SK et al (1989) Agroforestry systems in the Garhwal Himalayas of India. Agrofor Syst 7:213–227

    Article  Google Scholar 

  • Elith J et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Engler R, Randin CF, Thuiller W, Dullinger S, Zimmermann NE, Araújo MB, Choler P (2011) 21st-century climate change threatens mountain flora unequally across Europe. Glob Change Biol 17:2330–2341

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH (2005) Global consequences of land use. Science 309(5734):570–574

    Article  CAS  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19:1–67

    Article  Google Scholar 

  • Fundazioa E (2011) Climate change may alter conditions for growth of Oak trees in Basque woodlands. ScienceDaily. www.sciencedaily.com/releases/2011/07/110708082609.htm

  • Gamble JS (1972) A manual of indian timbers, 2nd edn. Bishen Singh Mahendra Pal Singh, Dehradun, p 868

    Google Scholar 

  • Griffies SM, Winton M, Donner LJ, Horowitz LW, Downes SM, Farneti R, Gnanadesikan A, Hurlin WJ, Lee HC, Liang Z, Palter JB (2011) The GFDL CM3 coupled climate model: characteristics of the ocean and sea ice simulations. J Clim 24:3520–3544

    Article  Google Scholar 

  • Hänninen H (2006) Climate warming and the risk of frost damage to boreal forest trees: identification of critical ecophysiological traits. Tree Physiol 26:889–898

    Article  PubMed  Google Scholar 

  • Hastie T, Tibshirani R (1990) Generalized additive models. Chapman and Hall

  • Hastie T, Tibshirani R, Buja A (1994) Flexible discriminant analysis by optimal scoring. J Am Stat Assoc 89:1255–1270

    Article  Google Scholar 

  • Henson R (2006) The rough guide to climate change. Rough Guides, London

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965-1978

    Article  Google Scholar 

  • IPCC (2007) Report of the 26th session of the IPCC. Bangkok. April 30–May 4 2007. Intergovernmental panel on climate change, Geneva, Switzerland

  • Jiménez-Valverde A, Acevedo P, Barbosa AM, Lobo JM, Real R (2013) Discrimination capacity in species distribution models depends on the representativeness of the environmental domain. Glob Ecol Biogeogr 22:508–516

    Article  Google Scholar 

  • Kelly PM, Leuschner HH, Briffa KR, Harris IC (2002) The climatic interpretation of pan-Euro-pean signature years in Oak ring-width series. Holocene 12:689–694

    Article  Google Scholar 

  • Khanna RK, Singh SP (1984) Standing state of nutrients. Ah integrated ecological study of eastern Kumaun Himalaya with emphasis on natural resources, 154–193S Singh and S P Singh (Final report (HCS/DST/187/76) Kumaun University. Nainital) vol. 2, pp 154–193

  • Lutz JA, Van Wagtendonk JW, Franklin JF (2010) Climatic water deficit, tree species ranges, and climate change in Yosemite National Park. J Biogeogr 37:936–950

    Article  Google Scholar 

  • Mani MS (1974) Ecology and biogeography in India. W. Junk, The Hague

    Book  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalised linear models, 2nd edn. Chapman & Hall, London

    Book  Google Scholar 

  • Menz G, Judex M, Orekan V, Kuhn A, Heldmann M, Thamm HP (2010) Land use and land cover modeling in Central Benin. Impacts of global change on the hydrological cycle in west and northwest Africa 512–535

  • Morin X, Roy J, Sonié L, Chuine I (2010) Changes in leaf phenology of three European Oak species in response to experimental climate change. New Phytol 186:900–910

    Article  PubMed  Google Scholar 

  • Negi GCS, Samal PK, Kuniyal JC, Kothyari BP, Sharma RK, Dhyani PP (2012) Impact of climate change on the western Himalayan mountain ecosystems: an overview. Trop Ecol 53:345–356

    Google Scholar 

  • Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Glob Ecol Biogeogr 12:361–371

    Article  Google Scholar 

  • Peterson AT et al (2011) Ecological niches and geographic distributions: e-book. Princeton University Press, Princeton

    Book  Google Scholar 

  • R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, Kindermann G, Nakicenovic N, Rafaj P (2011) RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Clim Change 109:33

    Article  CAS  Google Scholar 

  • Ridgeway G (1999) The state of boosting. Comput Sci Stat 31:172–181

    Google Scholar 

  • Roy PS, Kushwaha SPS, Roy A, Karnataka H & Saran S (2013) Biodiversity characterization at landscape level using geospatial model. Anais XVI Simpósio Brasileiro de Sensoriamento Remoto–SBSR, Foz do Iguacu, PR, Brasil, pp 3321–3328

  • Rustad L, Campbell J, Dukes JS, Huntington T, Lambert KF, Mohan J, Rodenhouse N (2012) Changing climate, changing forests: the impacts of climate change on forests of the northeastern United States and eastern Canada. US Department of Agriculture, Forest Service, Northern Research Station, Newtown Square, p 48

    Book  Google Scholar 

  • Sala OE, Chapin III FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C, Wilmking M (2011) Drought mat-ters—declining precipitation influences growthof Fagus sylvatica L. and Quercus robur L. innorth-eastern Germany. For Ecol Manag 262:947–961

    Article  Google Scholar 

  • Shrestha BB (2003) Quercus semecarpifolia Sm. in the Himalayan region: ecology, exploitation and threats. Himal J Sci 1:126–128

    Google Scholar 

  • Singh SP (2014) Attributes of Himalayan forest ecosystems: they are not temperate forests. Proc Indian Natl Sci Acad 80:221–233

    Article  Google Scholar 

  • Singh SP, Singh JS (1986) Structure and function of the Central Himalayan Oak forests. Proc Plant Sci 96:159–189

    Google Scholar 

  • Singh VP, Singh JS (1989) Man and forests: a case study from the dry tropics of India. Environ Conserv 16:129–137

    Article  Google Scholar 

  • Singh JS, Singh SP (1992) Forests of Himalayas. Gynodaya Prakashan, Nainital

    Google Scholar 

  • Singh JS, Pandey U, Tiwari AK (1984) Man and forests: a central Himalayan case study. Ambio 3:80–87

    Google Scholar 

  • Singh G, Padalia H, Rai ID, Bharti RR, Rawat GS (2016) Spatial extent and conservation status of Banj Oak (Quercus leucotrichophora A. Camus) forests in Uttarakhand, Western Himalaya. Trop Ecol 57(2):255–262

    Google Scholar 

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V and Midgley PM (2013) Climate change 2013: the physical science basis. In: Intergovernmental panel on climate change, working group I contribution to the IPCC fifth assessment report (AR5), New York

  • Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicenter. PLoS ONE 8(2):e57103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thadani R, Ashton PMS (1995) Regeneration of banj Oak (Quercus leucotrichophora A. Camus) in the central Himalaya. For Ecol Manag 78:217–224

    Article  Google Scholar 

  • Thuiller W (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373

    Article  Google Scholar 

  • Travis JMJ (2003) Climate change and habitat destruction: a deadly anthropogenic cocktail. Proc R Soc Lond Ser B 270:467–473

    Article  CAS  Google Scholar 

  • Troup RS (1921) The silviculture of Indian trees, vol. I–III. Clarendon Press, Oxford

    Google Scholar 

  • Upreti N, Tewari JC, Singh SP (1985) The Oak forests of the Kumaun Himalaya (India): composition, diversity and regeneration. Mount Res Dev 5:163–174

    Article  Google Scholar 

  • Valdiya KS (1998) Dynamic Himalayan. University Press Ltd., Hyderabad, p 178

    Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistic with S. Springer, Berlin

    Book  Google Scholar 

  • Voldoire A, Sanchez-Gomez E, y Mélia DS, Decharme B, Cassou C, Sénési S, Valcke S, Beau I, Alias A, Chevallier M, Déqué M (2013) The CNRM-CM5. 1 global climate model: description and basic evaluation. Clim Dyn 40:2091–2121

    Article  Google Scholar 

  • Walker M, Wahren CH, Hollister RD (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci USA 103:1342–1346

    Article  CAS  PubMed  Google Scholar 

  • Walther GR, Berger S, Sykes MT (2005) An ecological ‘footprint’ of climate change. Proc R Soc Lond B 272:1427–1432

    Article  Google Scholar 

  • Wise M, Calvin K, Thomson A, Clarke L, Bond-Lamberty B, Sands R, Smith SJ, Janetos A, Edmonds J (2009) Implications of limiting CO2 concentrations for land use and energy. Science 324:1183–1186

    Article  CAS  Google Scholar 

  • Wolfe J A (1979) Temperature parameters of humid to mesic forests of eastern Asia and relation to forests of other regions of the Northern Hemisphere and Australasia. Washington (DC): US Department of Interior Geological Survey. Professional Paper No 1106

  • Yukimoto S, Adachi Y, Hosaka M, Sakami T, Yoshimura H, Hirabara M, Tanaka TY, Shindo E, Tsujino H, Deushi M, Mizuta R (2012) A new global climate model of the Meteorological Research Institute: MRI-CGCM3—model description and basic performance. J Meteorol Soc Jpn Ser II 90:23–64

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Chairman ISRO for his encouragement and support. The authors are also thankful to Director, IIRS for his guidance. This work is a part of Department of Space, Govt. of India funded project and financial support for the same is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arijit Roy.

Additional information

Communicated by M. D. Behera, S. K. Behera and S. Sharma.

Appendices

Appendix 1: Satellite data/source used to prepare decadal LULC maps

S. no

LULC map

Source

1.

1975

Landsat Multispectral Scanner System (MSS)

2.

1985

Landsat Thematic Mapper (TM)

3.

1995

Landsat Thematic Mapper (TM)

4.

2005

IRS Advanced Wide Field Sensor (AWiFS)

5.

2015

IRS Advanced Wide Field Sensor (AWiFS)

Appendix 2

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathore, P., Roy, A. & Karnatak, H. Assessing the vulnerability of Oak (Quercus) forest ecosystems under projected climate and land use land cover changes in Western Himalaya. Biodivers Conserv 28, 2275–2294 (2019). https://doi.org/10.1007/s10531-018-1679-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-018-1679-7

Keywords

Navigation