Skip to main content

Advertisement

Log in

How effective are buffer zones in managing invasive beavers in Patagonia? A simulation study

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

In an age of invasions, it is critical to design and test management strategies to more efficiently control foreign species. Spatially explicit individual based models (SEIBMs) are a powerful tool to explore different management scenarios to control invaders, but we rarely have enough data to parameterize these models, particularly for relatively long-lived species. Here we take advantage of our previous work estimating demographic rates of invasive beavers in Patagonia, and develop an SEIBM to model the spread of beavers in Patagonia. We used our SEIBM both to estimate dispersal distances by fitting their observed rate of spread and to test how placing a buffer zone (a longitudinal strip of land perpendicular to the direction of spread within which a fraction of beavers are culled) beyond the invasion front would work as a control strategy. Specifically, we explored six different scenarios with two different culling rates and two buffer zone widths. We found that beavers in Patagonia must disperse long distances on average to account for the observed rate of spread, and thus our model predicts that a 100 km buffer zone will be needed to slow (but likely not halt) the spread of beavers. Interestingly, culling a higher proportion of beavers within a 100 km buffer zone (90 vs. 60%) did not improve buffer zone performance. Our study shows that wide buffer zones can slow (but likely not halt) continental spread of beavers in Patagonia and potentially pave the way for beaver eradication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams VM et al (2015) Distribution, demography and dispersal model of spatial spread of invasive plant populations with limited data. Methods Ecol Evol 6:782–794. doi:10.1111/2041-210X.12392

    Article  Google Scholar 

  • Allen AW, Energy W, Team LU (1983) Habitat suitability index models: beaver. Western Energy and Land Use Team, Division of Biological Service, Research and Development, Fish and Wildlife Service, US Department of the Interior

  • Altwegg R, Collingham YC, Erni B, Huntley B (2013) Density-dependent dispersal and the speed of range expansions. Divers Distrib 19:60–68. doi:10.1111/j.1472-4642.2012.00943.x

    Article  Google Scholar 

  • Anderson CB, Rosemond AD (2007) Ecosystem engineering by invasive exotic beavers reduces in-stream diversity and enhances ecosystem function in Cape Horn, Chile. Oecologia 154:141–153. doi:10.1007/s00442-007-0757-4

    Article  PubMed  Google Scholar 

  • Anderson CB, Rosemond AD (2010) Beaver invasion alters terrestrial subsidies to subantarctic stream food webs. Hydrobiologia 652:349–361. doi:10.1007/s10750-010-0367-8

    Article  CAS  Google Scholar 

  • Anderson C, Griffith C, Rosemond A, Rozzi R, Dollenz O (2006) The effects of invasive North American beavers on riparian plant communities in Cape Horn, Chile: do exotic beavers engineer differently in sub-Antarctic ecosystems? Biol Conserv 128:467–474

    Article  Google Scholar 

  • Anderson CB, Vanessa Lencinas M, Wallem PK, Valenzuela AEJ, Simanonok MP, Martínez Pastur G (2014) Engineering by an invasive species alters landscape-level ecosystem function, but does not affect biodiversity in freshwater systems. Divers Distrib 20:214–222. doi:10.1111/ddi.12147

    Article  Google Scholar 

  • Beer JR (1955) Movements of tagged beaver. J Wildl Manage 19:492–493

    Article  Google Scholar 

  • Byrne AW, Quinn JL, O’Keeffe JJ, Green S, Paddy Sleeman D, Wayne Martin S, Davenport J (2014) Large-scale movements in European badgers: has the tail of the movement kernel been underestimated? J Anim Ecol 83:991–1001. doi:10.1111/1365-2656.12197

    Article  PubMed  Google Scholar 

  • Choi C (2008) Tierra del Fuego: the beavers must die. Nat News 453:968

    Article  CAS  Google Scholar 

  • Coronato A, Escobar J, Mallea C, Roig C, Lizarralde M (2003) Caracteristicas geomorfologicas de rios de montaña colonizados por Castor canadensis en Tierra del Fuego. Argentina Ecol Austral 13:15–26

    Google Scholar 

  • Freuling CM, Hampson K, Selhorst T, Schröder R, Meslin FX, Mettenleiter TC, Müller T (2013) The elimination of fox rabies from Europe: determinants of success and lessons for the future. Philos Trans R Soc B. doi:10.1098/rstb.2012.0142

    Google Scholar 

  • Graells G, Corcoran D, Aravena J (2015) Invasion of North American beaver (Castor canadensis) in the province of Magallanes, Southern Chile: comparison between dating sites through interviews with the local community and dendrochronology. Rev Chil Hist Nat 88:3

    Article  Google Scholar 

  • Grimm V, Railsback SF (2013) Individual-based modeling and ecology. Princeton University Press, Princeton

    Google Scholar 

  • Grimm V et al (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987–991. doi:10.1126/science.1116681

    Article  PubMed  Google Scholar 

  • Harrington LA, Hughes J, Macdonald DW (2008) Management of American mink in the northern highlands: a proposed cordon sanitaire approach. Wildlife Conservation Research Unit, University of Oxford

  • Haydon D et al (2006) Low-coverage vaccination strategies for the conservation of endangered species. Nature 443:692–695

    Article  CAS  PubMed  Google Scholar 

  • Henn JJ, Anderson CB, Kreps G, Lencinas MV, Soler R, Pastur GM (2014) Determining abiotic and biotic factors that limit transplanted Nothofagus pumilio Seedling success in abandoned beaver meadows in Tierra del Fuego. Ecol Restor 32:369–378. doi:10.3368/er.32.4.369

    Article  Google Scholar 

  • Kot M, Lewis MA, van den Driessche P (1996) Dispersal data and the spread of invading organisms. Ecology 77:2027–2042

    Article  Google Scholar 

  • Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic invasions: causes, epidemiology, global consequences, and control. Ecol Appl 10:689–710

    Article  Google Scholar 

  • Malmierca L, Menvielle M, Ramadori D, Saavedra B, Saunders A, Soto N, Schiavini A (2011) Eradication of beaver (Castor canadensis), an ecosystem engineer and threat to southern Patagonia. In: Island invasives: eradication and management, International Conference on Island Invasives, 2011. pp 87-90

  • Manchester SJ, Bullock JM (2000) The impacts of non-native species on UK biodiversity and the effectiveness of control. J Appl Ecol 37:845–864. doi:10.1046/j.1365-2664.2000.00538.x

    Article  Google Scholar 

  • Martínez Pastur G, Lencinas M, Escobar J, Quiroga P, Malmierca L, Lizarralde M (2006) Understorey succession in Nothofagus forests in Tierra del Fuego (Argentina) affected by Castor canadensis. Appl Veg Sci 9:143–154

    Article  Google Scholar 

  • Menvielle M, Funes M, Malmierca L, Ramadori D, Saavedra B, Schiavini A, Soto Volkart N (2010) American beaver eradication in the southern tip of South America: main challenges of an ambitious project. Aliens Invasive Species Bull 29:9–16

    Google Scholar 

  • Moorman MC, Eggleston DB, Anderson CB, Mansilla A, Szejner P (2009) Implications of beaver Castor canadensis and trout introductions on native fish in the Cape Horn Biosphere Reserve, Chile. Trans Am Fish Soc 138:306–313. doi:10.1577/t08-081.1

    Article  Google Scholar 

  • Muller-Schwarze D (2011) The beaver: its life and impact. Cornell University Press, Ithaca

    Book  Google Scholar 

  • Murray J, Stanley E, Brown D (1986) On the spatial spread of rabies among foxes. Proc R Soc London B 229:111–150

    Article  CAS  Google Scholar 

  • Parker H, Nummi P, Hartman G, Rosell F (2012) Invasive North American beaver Castor canadensis in Eurasia: a review of potential consequences and a strategy for eradication. Wildl Biol 18:354–365

    Article  Google Scholar 

  • Pech R, Byrom A, Anderson D, Thomson C, Coleman M (2010) The effect of poisoned and notional vaccinated buffers on possum (Trichosurus vulpecula) movements: minimising the risk of bovine tuberculosis spread from forest to farmland. Wildl Res 37:283–292

    Article  Google Scholar 

  • Pietrek AG (2015) Demography and spread of invasive beavers in the heterogeneous landscapes of Patagonia. Dissertation, Duke University

  • Pietrek AG, Fasola L (2014) Origin and history of the beaver introduction in South America. Mastozoología Neotropical 21:355–359

    Google Scholar 

  • Pietrek AG, González-Roglich M (2015) Post-establishment changes in habitat selection by an invasive species: beavers in the Patagonian steppe. Biol Invasions 17:3225–3235

    Article  Google Scholar 

  • Pietrek AG, Escobar JM, Fasola L, Roesler I, Schiavini A (2016) Why invasive Patagonian beavers thrive in unlikely habitats: a demographic perspective. J Mammal. doi:10.1093/jmammal/gyw169

    Google Scholar 

  • Russell CA, Smith DL, Childs JE, Real LA (2005) Predictive spatial dynamics and strategic planning for raccoon rabies emergence in Ohio. PLoS Biol 3:382–388. doi:10.1371/journal.pbio.0030088

    Article  CAS  Google Scholar 

  • Sanguinetti J et al (2014) Manejo de especies exóticas invasoras en Patagonia, Argentina: Priorización, logros y desafíos de integración entre ciencia y gestión identificados desde la Administración de Parques Nacionales. Ecología austral 24:183–192

    Google Scholar 

  • Saveljev A, Stubbe M, Stubbe A, Unzhakov V, Kononov S (2002) Natural movements of tagged beavers in Tyva. Russ J Ecol 33:434–439

    Article  Google Scholar 

  • Schiavini A, Carranza ML, Deferrari G, Escobar J, Malmierca L, Pietrek AG (2016) Erradicación de especies invasoras: Ciencia, actitud y entendimiento. El castor en Tierra del Fuego Mastozoología Neotropical 23:279–288

    Google Scholar 

  • Simberloff D (2009) We can eliminate invasions or live with them. Successful management projects. Biol Invasions 11:149–157. doi:10.1007/s10530-008-9317-z

    Article  Google Scholar 

  • Skewes O, Gonzalez F, Olave R, Avila A, Vargas V, Paulsen P, Konig HE (2006) Abundance and distribution of American beaver, Castor canadensis (Kuhl 1820), in Tierra del Fuego and Navarino islands, Chile. Eur J Wildl Res 52:292–296. doi:10.1007/s10344-006-0038-2

    Article  Google Scholar 

  • Sleeman DP, Davenport J, More SJ, Clegg TA, Griffin JM, O’Boyle I (2008) The effectiveness of barriers to badger Meles meles immigration in the Irish Four Area project. Eur J Wildl Res 55:267–278. doi:10.1007/s10344-008-0241-4

    Article  Google Scholar 

  • Soto Simeone A, Soza-Amigo S (2014) Economic valuation of native forest affected by the North American beaver (Castor canadensis) in Tierra del Fuego. BOSQUE 35:229–234

    Article  Google Scholar 

  • Travis JMJ, Murrell DJ, Dytham C (1999) The evolution of density–dependent dispersal. Proc R Soc London B 266:1837–1842. doi:10.1098/rspb.1999.0854

    Article  Google Scholar 

  • Travis JMJ, Harris CM, Park KJ, Bullock JM (2011) Improving prediction and management of range expansions by combining analytical and individual-based modelling approaches. Methods Ecol Evol 2:477–488. doi:10.1111/j.2041-210X.2011.00104.x

    Article  Google Scholar 

  • White A, Bell SS, Lurz PW, Boots M (2014) Conservation management within strongholds in the face of disease-mediated invasions: red and grey squirrels as a case study. J Appl Ecol 51:1631–1642

    Article  Google Scholar 

  • Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615

    Article  Google Scholar 

  • Wilensky U (1999) NetLogo. Center for connected learning and computer-based modeling, Northwestern University, Evanston, IL. http://ccl.northwestern.edu/netlogo/

Download references

Acknowledgements

The authors want to thank Julio Escobar for his valuable comments on the conceptual design and development of the individual based simulations and Mariano Gonzalez Roglich who helped to build the GIS landscapes used in our simulations. This work was funded by Cleveland Metroparks Zoo, CREOI (Conservation and Research Opportunities International), Duke Graduate School and the Rufford Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro G. Pietrek.

Additional information

Communicated by B. D. Hoffmann.

This article belongs to the Topical Collection: Invasive species.

Appendix

Appendix

See Figs. 6 and 7.

Fig. 6
figure 6

Distribution of dispersal distances of successful crossings with a 100 km width buffer zone under different culling scenarios

Fig. 7
figure 7

Distribution of time of first arrival to the other side of the 100 km buffer zone under different culling scenarios

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pietrek, A.G., Himes Boor, G.K. & Morris, W.F. How effective are buffer zones in managing invasive beavers in Patagonia? A simulation study. Biodivers Conserv 26, 2591–2605 (2017). https://doi.org/10.1007/s10531-017-1373-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1373-1

Keywords

Navigation