Skip to main content

Advertisement

Log in

Stability or breakdown under climate change? A key group of woody bamboos will find suitable areas in its richness center

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Bamboos play an important role in forest dynamics, but management strategies are needed to avoid monodominance. Understanding how climate change would influence the geographic distribution of bamboos could provide management tools for habitat conservation, as well as prevent the expansion of this group. We investigated the distribution patterns of Merostachys species that are endemic to the Brazilian Atlantic Forest, under current and future climate scenarios. We obtained occurrence records based on field collection, herbaria data and online databases. We used the Maxent algorithm to model potential distribution. Future scenarios considered the IPCC forecasted climate for 2070. Our models showed that a reduction in suitable areas for Merostachys species will likely occur, but the existence of suitable areas under climate changes in the Brazilian Atlantic Forest indicates climatic stability in some areas of occurrence of these species in their richness center. Since the fact that in places with local dominance of woody bamboos there is a decrease in the diversity of other plant species, the occurrence of Merostachys throughout the suitable areas may represent risks to biodiversity conservation. Investigations of the synergistic effects of climate change and the local dominance of woody bamboos are required. Therefore, management measures may be very important to control the occurrence of woody bamboos in the Brazilian Atlantic Forest, mainly in climatically stable areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. doi:10.1111/j.1365-2664.2006.01214.x

    Article  Google Scholar 

  • Banik RL (2015) Bamboo Silviculture. In: Liese LW, Köhl KM (eds) Bamboo: the plant and its uses. Springer, New York, pp 113–174. doi:10.1007/978-3-319-14133-6

    Google Scholar 

  • Borcard D, Legendre P, Gillet F (2011) Numerical Ecology with R. Springer, New York. doi:10.1007/978-1-4419-7976-6

    Book  Google Scholar 

  • Burman AG, Filgueiras TS (1993) A review of the woody bamboo genera of Brazil (Gramineae: Bambusoideae: Bambuseae). Thaiszia 3:53–88

    Google Scholar 

  • Bystriakova N, Kapos V, Lysenko I, Stapleton CMA (2003) Distribution and conservation status of forest bamboo biodiversity in the Asia-Pacific Region. Biodivers Conserv 12:1833–1841. doi:10.1023/A:1024139813651

    Article  Google Scholar 

  • Bystriakova N, Kapos V, Lysenko I (2004) Bamboo biodiversity: Africa, Madagascar and the Americas, 19th edn. UNEP-WCMC, INBAR, Cambridge

    Google Scholar 

  • Carnaval AC, Moritz C (2008) Historical climate modelling predicts patterns of current biodiversity in the Brazilian Atlantic Forest. J Biogeogr 35:1187–1201. doi:10.1111/j.1365-2699.2007.01870.x

    Article  Google Scholar 

  • Cestari C, Bernardi CJ (2011) Predation of the Buffy-fronted Seedeater Sporophila frontalis (Aves: Emberizidae) on Merostachys neesii (Poaceae: Bambusoideae) seeds during a masting event in the Atlantic forest. Biota Neotrop 11:393–397. doi:10.1590/S1676-06032011000300033

    Article  Google Scholar 

  • Christensen JH, Kumar KK, Aldrian E, An S-I, Cavalcanti IFA, Castro M, Dong W, Goswami P, Hall A, Kanyanga JK, Kitoh A, Kossin J, Lau N-C, Renwick J, Stephenson DB, Xie S-P, Zhou T (2013) Climate phenomena and their relevance for future regional climate change. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 1217–1308

  • Clark LG (1990) Diversity and biogeography of Neotropical bamboos (Poaceae: Bambusoideae). Acta Bot Bras 4:125–132. doi:10.1590/S0102-33061990000100009

    Article  Google Scholar 

  • Clark LG, Ely FU (2011) Géneros de bambúes leñosos (Poaceae: Bambusoideae: Arundinarieae, Bambuseae) de Venezuela. Acta Bot Venez 34:79–103

    Google Scholar 

  • Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JMM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. doi:10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Fantini AC, Guries RP (2007) Forest structure and productivity of palmiteiro (Euterpe edulis Mart.) in the Brazilian Mata Atlântica. For Ecol Manag 242:185–194. doi:10.1016/j.foreco.2007.01.005

    Article  Google Scholar 

  • Filgueiras ST, Santos-Gonçalves AP (2004) A checklist of the basal grasses and bamboos in Brazil (Poaceae). J Am Bamboo Soc 18:7–18

    Google Scholar 

  • Griscom BW, Ashton PMS (2006) A self-perpetuating bamboo disturbance cycle in a neotropical forest. J Trop Ecol 22:587–597. doi:10.1017/S0266467406003361

    Article  Google Scholar 

  • Griscom BW, Daly DC, Ashton PM (2007) Floristics of bamboo-dominated stands in lowland terra-firma forests of southwestern Amazonia. J Torrey Bot Soc 134:108–125

    Article  Google Scholar 

  • Grombone-Guaratini MT, Gaspar M, Oliveira VF, Torres MAMG, Nascimento A, Aidar MPM (2013) Atmospheric CO2 enrichment markedly increases photosynthesis and growth in a woody tropical bamboo from the Brazilian Atlantic Forest. N Z J Bot 51:275–285. doi:10.1080/0028825X.2013.829502

    Article  Google Scholar 

  • Guilherme FAG, Oliveira-Filho AT, Appolinário V, Bearzoti E (2004) Effects of flooding regime and woody bamboos on tree community dynamics in a section of tropical semideciduous forest in South-Eastern Brazil. Plant Ecol 174:19–36. doi:10.1023/B:VEGE.0000046051.97752.cd

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276

    Article  Google Scholar 

  • IBGE [Instituto Brasileiro de Geografia e Estatística] (2004) Mapa de Biomas do Brasil, primeira aproximação. Fundação Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro

  • IBGE [Instituto Brasileiro de Geografia e Estatística] (2012) Manual técnico da vegetação brasileira. Fundação Instituto Brasileiro de Geografia e Estatística, Rio de Janeiro

  • IPCC [Intergovernmental Panel on Climate Change] (2013) Climate change 2013: the physical science basis. contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

  • Jaksic FM, Lima M (2003) Myths and facts on ratadas: bamboo blooms, rainfall peaks and rodent outbreaks in South America. Austral Ecol 28:237–251. doi:10.1046/j.1442-9993.2003.01271.x

    Article  Google Scholar 

  • Judziewicz EJ, Clark LG, Londonõ X, Stern M (1999) American bamboos. Smithsonian Institution Press, Washington, DC

  • Kaminski N, Angelo AC, Nicola PA (2016) A influência do gradiente sucessional e da frutificação de Merostachys aff. multiramea em uma comunidade de aves da Floresta com Araucária. Iheringia Sér Zool 106:1–9. doi:10.1590/1678-4766e2016002

    Article  Google Scholar 

  • Li R, Xu M, Wong MHG, Qiu S, Sheng Q, Li X, Song Z (2014) Climate change induced decline in bamboo habitats and species diversity: implications for giant panda conservation. Divers Distrib 20:1–13. doi:10.1111/ddi.12284

    Article  Google Scholar 

  • Lima RAF, Rother DC, Muler AE, Lepsch IF, Rodrigues RR (2012) Bamboo overabundance alters forest structure and dynamics in the Atlantic Forest hotspot. Biol Conserv 147:32–39. doi:10.1016/j.biocon.2012.01.015

    Article  Google Scholar 

  • Liu CR, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393. doi:10.1111/j.0906-7590.2005.03957.x

    Article  Google Scholar 

  • Magrin G, García CG, Choque DC, Giménez JC, Moreno AR, Nagy GJ, Nobre C, Villamizar A (2007) Latin America. In: Parry ML, Canziani OF, Palutikof JP, Van Der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, pp 581–615

  • Manel S, Williams HC, Ormerod SJ (2001) Evaluating presence-absence models in ecology: the need to account for prevalence. J Appl Ecol 38:921–931. doi:10.1046/j.1365-2664.2001.00647.x

    Article  Google Scholar 

  • Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69. doi:10.1111/j.1472-4642.2008.00491.x

    Article  Google Scholar 

  • Martins SV, Colletti-Júnior R, Rodrigues RR, Gandolfi S (2004) Colonization of gaps produced by death of bamboo clumps in a semideciduous mesophytic forest in south-eastern Brazil. Plant Ecol 172:121–131. doi:10.1023/B:VEGE.0000026030.93687.c4

    Article  Google Scholar 

  • McClure FA (1966) The bamboos: a fresh perspective. Harvard University Press, Cambridge

    Book  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software, Gleneden Beach

    Google Scholar 

  • McCune B, Mefford MJ (2011) PC-ORD: multivariate analysis of ecological data. Version 6.25. MjM Software, Gleneden Beach

  • Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058–1069. doi:10.1111/j.1600-0587.2013.07872.x

    Article  Google Scholar 

  • Montti L, Villagra M, Campanello PI, Gatti MG, Goldstein G (2013) Functional traits enhance invasiveness of bamboos over co-occurring tree saplings in the semideciduous Atlantic Forest. Acta Oecol 54:36–44. doi:10.1016/j.actao.2013.03.004

    Article  Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature 403:853–858. doi:10.1038/35002501

    Article  CAS  PubMed  Google Scholar 

  • Oliveira-Filho AT, Vilela EA, Gavilanes ML, Carvalho DA (1994) Effect of flooding regime and understorey bamboos on the physiognomy and tree species composition of a tropical semideciduous forest in Southeastern Brazil. Vegetatio 113:99–124. doi:10.1007/BF00044229

    Google Scholar 

  • Pearson RG (2008) Species’ distribution modeling for conservation educators and practitioners. Synthesis, American Museum of Natural History. http://ncep.amnh.org

  • Pearson RG, Raxworthy CJ, Nakamur M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117. doi:10.1111/j.1365-2699.2006.01594.x

    Article  Google Scholar 

  • Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world map of the Köppen Geiger climate classification. Hydrol Earth Syst Sci Discuss 11:1633–1644. doi:10.5194/hess-11-1633-2007

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Robert C, Schapired E (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • QGIS Development Team (2014) QGIS geographic information system. Open Source Geospatial Foundation Project. http://qgis.osgeo.org

  • Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM (2009) The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biol Conserv 142:1141–1153. doi:10.1016/j.biocon.2009.02.021

    Article  Google Scholar 

  • Ribeiro MC, Martensen AC, Metzger JP, Tabarelli M, Scarano F, Fortin MJ (2011) The Brazilian Atlantic Forest: a shrinking biodiversity hotspot. In: Zachos FE, Habel JC (eds) Biodiversity hotspots: distribution and protection of conservation priority areas. Springer, Heidelberg, pp 405–434

    Chapter  Google Scholar 

  • Rother DC, Rodrigues RR, Pizo MA (2009) Effects of bamboo stands on seed rain and seed limitation in a rainforest. For Ecol Manag 257:885–892. doi:10.1016/j.foreco.2008.10.022

    Article  Google Scholar 

  • Santos SC, Budke JC, Muller A (2012) Regeneração de espécies arbóreas sob a influência de Merostachys multiramea Hack. (Poaceae) em uma floresta subtropical. Acta Bot Bras 26:218–229. doi:10.1590/S0102-33062012000100021

    Article  Google Scholar 

  • Sendulsky T (1997) Twelve new species of Merostachys (Poaceae: Bambusoideae: Bambuseae) from Brazil. Novon 7:285–307. doi:10.2307/3391946

    Article  Google Scholar 

  • Tabarelli M, Mantovani W (2000) Gap-phase regeneration in a tropical montane forest: the effects of gap structure and bamboo species. Plant Ecol 148:149–155. doi:10.1023/A:1009823510688

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the following Brazilian funding agencies: Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq 563545/2010-0-REFLORA and a Productivity Grant for J.A.A. Meira-Neto). M.A. Cupertino-Eisenlohr and R. Vinícius-Silva were granted a scholarship by REFLORA/CAPES. We are also indebted to Lynn G. Clark, for all scientific support; Daniel Paiva Silva and Marinez Ferreira de Siqueira, for all support given during the modeling process; and to both anonymous reviewers for their strong contributions to this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mônica A. Cupertino-Eisenlohr or Ana Paula Santos-Gonçalves.

Additional information

Communicated by Daniel Sanchez Mata.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Supplementary material 2 (DOCX 2756 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cupertino-Eisenlohr, M.A., Vinícius-Silva, R., Meireles, L.D. et al. Stability or breakdown under climate change? A key group of woody bamboos will find suitable areas in its richness center. Biodivers Conserv 26, 1845–1861 (2017). https://doi.org/10.1007/s10531-017-1332-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-017-1332-x

Keywords

Navigation