Skip to main content

Advertisement

Log in

Paying the colonization credit: converging plant species richness in ancient and post-agricultural forests in NE Germany over five decades

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Massive historical land cover changes in the Central European lowlands have resulted in a forest distribution that now comprises small remnants of ancient forests and more recently established post-agricultural forests. Here, land-use history is considered a key driver of recent herb-layer community changes, where an extinction debt in ancient forest remnants and/or a colonization credit in post-agricultural forests are being paid over time. On a regional scale, these payments should in theory lead toward a convergence in species richness between ancient and post-agricultural forests over time. In this study, we tested this assumption with a resurvey of 117 semi-permanent plots in the well-studied deciduous forests of the Prignitz region (Brandenburg, NE Germany), where we knew that the plant communities of post-agricultural stands exhibit a colonization credit while the extinction debt in ancient stands has largely been paid. We compared changes in the species richness of all herb layer species, forest specialists and ancient forest indicator species between ancient and post-agricultural stands with linear mixed effect models and determined the influence of patch connectivity on the magnitude of species richness changes. Species richness increased overall, but the richness of forest specialists increased significantly more in post-agricultural stands and was positively influenced by higher patch connectivity, indicating a convergence in species richness between the ancient and post-agricultural stands. Furthermore, the richness of ancient forest indicator species only increased significantly in post-agricultural stands. For the first time, we were able to verify a gradual payment of the colonization credit in post-agricultural forest stands using a comparison of actual changes in temporal species richness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baeten L, Bauwens B, De Schrijver A, De Keersmaeker L, Van Calster H, Vandekerkhove K, Roelandt B, Beekman H, Verheyen K (2009) Herb-Layer changes (1954-2000) related to the conversion of coppice-with-standards forest and soil acidification. Appl Veg Sci 12:187–197

    Article  Google Scholar 

  • Baeten L, Hermy M, Van Daele S, Verheyen K (2010) Unexpected understory community development after 30 years in ancient and post-agricultural forests. J Ecol 98:1447–1453

    Article  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2015) lme4: Linear mixed-effect models using Eigen and S4. R package version 1.1-8, http://CRAN.R-project.org/package=lme4

  • Bernhardt-Römermann M, Baeten L, Craven D, De Frenne P, Hédl R, Lenoir J, Bert D, Brunet J, Chudomelová M, Decocq G, Dierschke H, Dirnböck T, Dörfler I, Heinken T, Hermy M, Hommel P, Jarozewicz B, Keczyński A, Kelly DJ, Kirby K, Kopecký M, Macek M, Máliš F, Mirtl M, Mitchell FJG, Naaf T, Newman M, Peterken G, Petřík P, Schmidt W, Standovár T, Tóth Z, Van Calster H, Verstraeten G, Vladovič J, Vild O, Wulf M, Verheyen K (2015) Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Glob Change Biol 21:3726–3737

    Article  Google Scholar 

  • Brunet J, Valtinat K, Lajos Mayr M, Felton A, Lindbladh M, Bruun HH (2011) Understory succession in post-agricultural oak forests: habitat fragmentation affects forest specialists and generalists differently. For Ecol Manag 262:1863–1871

    Article  Google Scholar 

  • Brunet J, De Frenne P, Holmström E, Lajos Mayr M (2012) Life-history traits explain rapid colonization of young post-agricultural forests by understory herbs. For Ecol Manag 278:55–62

    Article  Google Scholar 

  • Butaye J, Jacquemyn H, Hermy M (2001) Differential colonization causing non-random forest plant community structure in a fragmented agricultural landscape. Ecography 24:369–380

    Article  Google Scholar 

  • Cronk Q (2016) Plant extinctions take time. Science 353:446–447

    Article  CAS  PubMed  Google Scholar 

  • De Frenne P, Baeten L, Graae B, Brunet J, Wulf M, Orczewska A, Kolb A, Jansen I, Jamoneau A, Jacquemyn H, Hermy M, Diekmann M, De Schrijver A, De Sanctis M, Decocq G, Cousins SAO, Verheyen K (2011) Interregional variation in the floristic recovery of post-agricultural forests. J Ecol 99:600–609

    Google Scholar 

  • De Schrijver A, Vesterdal L, Hansen K, De Frenne P, Augusto L, Achat DL, Staelens J, Baeten L, De Keersmaeker L, De Neve S, Verheyen K (2012) Four decades of post-agricultural forest development have caused major redistributions of soil phosphorous fractions, Oecologia 169: 221–234

  • Dullinger S, Gattringer A, Thuiller W, Moser D, Zimmermann NE, Guisan A, Willner W, Plutzar C, Leitner M, Mang T, Caccianiga M, Dirnboeck T, Ertl S, Fischer A, Lenoir J, Svenning J, Psomas A, Schmatz DR, Silc U, Vittoz P, Huelber K (2012) Extinction debt of high-mountain plants under twenty-first-century climate change. Nat Clim Chang 2:619–622

    Article  Google Scholar 

  • DWD (2014) http://www.dwd.de/bvbw/generator/DWDWWW/Content/Oeffentlichkeit/KU/KU2/KU21/klimadaten/german/nieder__8110__akt__html,templateId=raw, property=publicationFile.html/nieder_8110_akt_html.htm>andhttp://www.dwd.de/bvbw/generator/DWDWWW/Content/Oeffentlichkeit/KU/KU2/KU21/klimadaten/german/tmp__8110__akt__html,templateId=raw, property=publicationFile.html/temp_8110_akt_html.html>l. Accessed 27 May 2014

  • Dzwonko Z, Loster S (1992) Species richness and seed dispersal to secondary woods in southern Poland. J Biogeogr 19:195–204

    Article  Google Scholar 

  • Etienne D, Ruffaldi P, Dupouey JL, Georges-Leroy M, Ritz F, Dambrine E (2013) Searching for ancient forests: a 2000 year history of land use in northeastern French forests deduced from the pollen composition of closed depressions. Holocene 23:678–691

    Article  Google Scholar 

  • Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280

    Article  Google Scholar 

  • Flinn KM, Marks PL (2007) Agricultural legacies in forest environments: tree communities, soil properties, and light availability. Ecol Appl 17:452–463

    Article  PubMed  Google Scholar 

  • Flinn KM, Vellend M (2005) Recovery of Forest Plant Communities in Post-Agricultural Landscapes. Front Ecol Environ 3:243–250

    Article  Google Scholar 

  • IUSS Working Group (2014) World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

  • Hanski I (1994) A practical model of metapopulation dynamics. J Anim Ecol 63:151–162

    Article  Google Scholar 

  • Hanski I (2000) Extinction debt and species credit in boreal forests: modelling the consequences of different approaches to biodiversity conservation. Ann Zool Fennici 37:271–280

    Google Scholar 

  • Helm A, Hanski I, Partel M (2006) Slow response of plant species richness to habitat loss and fragmentation. Ecol Lett 9:72–77

    PubMed  Google Scholar 

  • Heráult B, Honnay O (2005) The relative importance of local, regional and historical factors determining the distribution of plants in fragmented riverine forests: an emergent group approach. J Biogeogr 32:2069–2081

    Article  Google Scholar 

  • Hermy M, Verheyen K (2007) Legacies of the past in the present-day forest biodiversity: a review of past land-use effects on forest plant species composition and diversity. Ecol Res 22:361–371

    Article  Google Scholar 

  • Hermy M, Honnay O, Firbank L, Grashof-Bokdam C, Lawesson JE (1999) An ecological comparison between ancient and other forest plant species of Europe, and the implications for forest conservation. Biol Conserv 91:9–22

    Article  Google Scholar 

  • Honnay O, Degroote B, Hermy M (1998) Ancient-forest plants in Western Belgium: a species list and possible ecological mechanisms. Belgian Bot 130:139–154

    Google Scholar 

  • IFS (1960) Ergebnisse der standortserkundung im staatlichen forstbetrieb perleberg (Erläuterung zu den Standartskarten). Institut für Forsteinrichtung und Standortserkundung, Schwerin

    Google Scholar 

  • Jackson ST, Sax DF (2010) Balancing biodiversity in a changing environment: extinction debt, immigration credit and species turnover. Trends Ecol Evol 25:153–160

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Butaye J, Hermy M (2001) Forest plant species richness in small, fragmented mixed deciduous forest patches: the role of area, time and dispersal limitation. J Biogeogr 28:801–812

    Article  Google Scholar 

  • Jacquemyn H, Butaye J, Hermy M (2003) Impacts of restored patch density and distance from natural forests on colonization success. Restor Ecol 11:417–423

    Article  Google Scholar 

  • Kaplan JO, Krumhardt KM, Zimmermann N (2009) The prehistoric and preindustrial deforestation of Europe. Quat Sci Rev 28:3016–3034

    Article  Google Scholar 

  • Keith SA, Newton AC, Morecroft MD, Bealey CE, Bullock JM (2009) Taxonomic homogenization of woodland plant communities over 70 years. Proc R Soc B 276:3539–3544

    Article  PubMed  PubMed Central  Google Scholar 

  • Kokarēviča I, Brumelis G, Kasparinskis R, Rolava A, Nikodemus O, Grods J, Elfert D (2016) Vegetation changes in boreo-nemoral forest stands depending on soil factors and past land use during an 80 year period of no human impact. Can J For Res 46:376–386

    Article  Google Scholar 

  • Kolk J, Naaf T (2015) Herb-layer extinction debt in highly fragmented temperate deciduous forests—completely paid after 160 years? Biol Conserv 182:164–172

    Article  Google Scholar 

  • Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. TREE 24:564–571

    PubMed  Google Scholar 

  • LBGR (2007) Landesamt für bergbau, geologie und rohstoffe (LBGR) Brandenburg bodenübersichtskarte des landes Brandenburg 1: 300,000 (BÜK300). LBGR, Kleinmachnow

    Google Scholar 

  • Lepš J, Hadincová V (1992) How reliable are our vegetation analysis? J Veg Sci 3:119–124

    Article  Google Scholar 

  • LGBR (2008) Landesamt für bergbau, geologie und rohstoffe (LBGR) Brandenburg, landkreis prignitz, geologische übersichtskarte 1:100,000. LBGR, Brandenburg

    Google Scholar 

  • LGBR (2009) Landesamt für bergbau, geologie und rohstoffe (LBGR) Brandenburg, landkreis ostprignitz-ruppin, geologische übersichtskarte 1:100,000. LBGR, Brandenburg

    Google Scholar 

  • Lindborg R, Eriksson O (2004) Historical landscape connectivity affects present plant species diversity. Ecology 85:1840–1845

    Article  Google Scholar 

  • Ling KA (2003) Using environmental and growth characteristics of plants to detect long-term changes in response to atmospheric pollution: some examples from British beechwoods. Sci Total Environ 310:203–210

    Article  CAS  PubMed  Google Scholar 

  • Manly BFJ (2007) Randomization, bootstrap and monte carlo methods in biology, 3rd edn. Chapman & Hall, London

    Google Scholar 

  • Matlack GR (1994) Plant species migration in a mixed-history forest landscape in eastern North America. Ecology 75:1491–1502

    Article  Google Scholar 

  • McCollin D, Jackson JI, Bunce RGH, Barr CJ, Stuart R (2000) Hedgerows as habitat for woodland plants. J Environ Manag 60:77–90

    Article  Google Scholar 

  • Moilanen A, Nieminen M (2002) Simple connectivity measures in spatial ecology. Ecology 83:1131–1145

    Article  Google Scholar 

  • Naaf T, Kolk J (2015) Colonization credit of post-agricultural forest patches in NE Germany remains 130–230 years after reforestation. Biol Conserv 182:155–163

    Article  Google Scholar 

  • Naaf T, Kolk J (2016) Initial site conditions and interactions between multiple drivers determine herb-layer changes over five decades in temperate forests. Forest Ecol Manag 366:153–165

    Article  Google Scholar 

  • Orczewska A (2009) The impact of former agriculture on habitat conditions and distribution patterns of ancient woodland plant species in recent black alder (Alnus glutinosa (L.) Gaertn.) woods in south-western Poland. Forest Ecol Manag 258:794–803

    Article  Google Scholar 

  • Paltto H, Norden B, Gotmark F, Franc N (2006) At which spatial and temporal scales does landscape context affect local density of red data book and indicator species? Biol Conserv 133:442–454

    Article  Google Scholar 

  • Perring MP, De Frenne P, Baeten L, Maes SL, Depauw L, Blondeel H, Caron MM, Verheyen K (2016) Global environmental change effects on ecosystems: the importance of land-use legacies. Glob Chang Biol 22:1361–1371

    Article  PubMed  Google Scholar 

  • Peterken GF, Game M (1984) Historical factors affecting the number and distribution of vascular plant-species in the woodlands of central Lincolnshire. J Ecol 72:155–182

    Article  Google Scholar 

  • Petit S, Griffith L, Smart SS, Smith GM, Stuart RC, Wright SM (2004) Effects of area and isolation of woodland patches on herbaceous plant species richness across Great Britain. Landscape Ecol 19:463–471

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2015) nlme: linear and nonlinear mixed effect models. R package version 3.1–122, http://CRAN.R-project.org/package=nlme

  • R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/

  • Rogers DA, Rooney TP, Hawbaker TJ, Radeloff VC, Waller DM (2009) Paying the extinction debt in southern wisconsin forest understories. Conserv Biol 23:1497–1506

    Article  PubMed  Google Scholar 

  • Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Biodiversity – global biodiversity scenarios for the year 2100. Science 287:1770–1774

    Article  CAS  PubMed  Google Scholar 

  • Schmidt M, Kriebitzsch WU, Ewald J (2011) Waldartenlisten der Farn- und Blütenpflanzen, Moose und Flechten Deutschlands. BfN-Skripten 299:1–111

    Google Scholar 

  • Singleton R, Gardescu S, Marks PL, Geber MA (2001) Forest herb colonization of post-agricultural forests in central New York State, USA. J Ecol 89:325–338

    Article  Google Scholar 

  • Svenning JC, Baktoft KH, Balslev H (2009) Land-use history affects understory plant species distributions in a large temperate-forest complex, Denmark. Plant Ecol 201:221–234

    Article  Google Scholar 

  • Thomaes A, De Keersmaeker L, Van Calster H, De Schrijver A, Vandekerkhove K, Verstraeten G, Verheyen K (2012) Diverging effects of two contrasting tree species on soil and herb layer development in a chronosequence of post-agricultural forest. Forest Ecol Manag 278:90–100

    Article  Google Scholar 

  • Tilman D, May RM, Lehman CL, Nowak MA (1994) Habitat destruction and the extinction debt. Nature 371:65–66

    Article  Google Scholar 

  • Vellend M (2003) Habitat loss inhibits recovery of plant diversity as forests regrow. Ecology 84:1158–1164

    Article  Google Scholar 

  • Vellend M, Verheyen K, Jacquemyn H, Kolb A, van Calster H, Peterken G, Hermy M (2006) Extinction debt of forest plants persists for more than a century following habitat fragmentation. Ecology 87:542–548

    Article  PubMed  Google Scholar 

  • Verheyen K, Guntenspergen G, Biesbrouck B, Hermy M (2003) An integrated analysis oft he effects of past land-use on forest plant species colonization at the landscape scale. J Ecol 91:731–742

    Article  Google Scholar 

  • Verheyen K, Baeten L, De Frenne P, Bernhardt-Römermann M, Brunet J, Cornelis J, Decocq G, Dierschke H, Eriksson O, Hédl R, Heinken T, Hermy M, Hommel P, Kirby K, Naaf T, Peterken G, Petřík P, Pfadenhauer J, Van Calster H, Walther GR, Wulf M, Verstraeten G (2012) Driving factors behind the eutrophication signal in understorey plant communities of deciduous temperate forests. J Ecol 100:352–365

    Article  Google Scholar 

  • Vockenhuber EA, Scherber C, Langenbruch C, Meißner M, Seidel D, Tscharntke T (2011) Tree diversity and environmental context predict herb species richness and cover in Germany’s largest connected deciduous forest. Perspect Plant Ecol Evol Syst 13:111–119

    Article  Google Scholar 

  • Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to climate change. Nature 416:389–395

    Article  CAS  PubMed  Google Scholar 

  • Williams M (2000) Dark ages and dark areas: global deforestation in the deep past. J Hist Geogr 26:28–46

    Article  Google Scholar 

  • Wulf M (1997) Plant species as indicators of ancient woodland in northwestern Germany. J Veg Sci 8:635–642

    Article  Google Scholar 

  • Wulf M (2004) Auswirkungen des Landschaftswandels auf die Verbreitungsmuster von Waldpflanzen - Konsequenzen für den Naturschutz. Dissertationes Botanicae 392, J. Cramer Berlin, Stuttgart, Germany

  • Wulf M, Kolk J (2014) Plant species richness of very small forests related to patch configuration, quality, heterogeneity and history. J Veg Sci 25:1267–1277

    Article  Google Scholar 

  • Wulf M, Rujner H (2011) A GIS-based method for the reconstruction of the late eighteenth century forest vegetation in the Prignitz region (NE Germany). Landsc Ecol 26:153–168

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the German Research Foundation (research grant NA 1067/1-1) and supported by the German Federal Ministry of Food, Agriculture and Consumer Protection (BMELV) and the Ministry for Science, Research and Culture of the State of Brandenburg, Germany (MWFK). We thank the regional forest authorities (Landeskompetenzzentrum Forst Eberswalde, LFE) for providing us the access to their archives from which we obtained the original site investigation record sheets. We further thank U. Jahn for her help in preparing the soil samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Kolk.

Additional information

Communicated by Daniel Sanchez Mata.

This article belongs to the Topical Collection: Forest and plantation biodiversity.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 22 kb)

Supplementary material 2 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolk, J., Naaf, T. & Wulf, M. Paying the colonization credit: converging plant species richness in ancient and post-agricultural forests in NE Germany over five decades. Biodivers Conserv 26, 735–755 (2017). https://doi.org/10.1007/s10531-016-1271-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-016-1271-y

Keywords

Navigation