Skip to main content

Advertisement

Log in

Effects of land use and landscape patterns on Orthoptera communities in the Western Siberian forest steppe

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Across Western Siberia, land use has changed substantially since the collapse of the Soviet Union in 1991: large cropland areas were abandoned and livestock numbers declined. In recent years these trends have partly been reversed, and an intensification of agricultural management has been observed that is still ongoing. We evaluated the impact of land use, as well as effects of landscape patterns and vegetation structure on Orthoptera communities and discuss them as drivers of community composition, species richness and abundance. We sampled Orthoptera using a box-quadrat on ancient grassland, ex-arable grassland (both including different management types: unmanaged, grazed and mown) and cereal fields. Landscape heterogeneity and composition strongly affected species richness and abundance of Orthoptera. Both were higher in grassland than in cropland, but did not differ significantly between ex-arable and ancient grasslands or different management practices. An Indicator Species Analysis revealed differentiation of Orthoptera communities between all management types. On croplands, the number of adult individuals and nymphs was influenced by the proportion of grassland in the surrounding landscape and tillage practices. Conservation tillage is most likely the key factor allowing Orthoptera to reproduce on croplands. After up to 24 years of succession, Orthoptera communities of ex-arable grasslands can be considered as completely recovered, as differences to ancient grasslands were minimal. Besides the continuation of low-intensity management, conservation strategies for this region should consider landscape composition and support habitat heterogeneity like ecotones with hemi-boreal forests in grassland-dominated landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baldi A, Kisbenedek T (1997) Orthopteran assemblages as indicators of grassland naturalness in Hungary. Agric Ecosyst Environ 66:121–129. doi:10.1016/S0167-8809(97)00068-6

    Article  Google Scholar 

  • Batary P, Orcib KM, Baldib A, Kleijnc D, Kisbenedekb T, Erdos S (2007) Effects of local and landscape scale and cattle grazing intensity on Orthoptera assemblages of the Hungarian Great Plain. Basic Appl Ecol 8:280–290. doi:10.1016/j.baae.2006.03.012

    Article  Google Scholar 

  • Bazelet CS, Samways MJ (2011) Identifying grasshopper bioindicators for habitat quality assessment of ecological networks. Ecol Indica 11:1259–1269. doi:10.1016/j.ecolind.2011.01.005

    Article  Google Scholar 

  • Bellmann H (2006) Der Kosmos Heuschreckenführer. Die Arten Mitteleuropas sicher bestimmen. Kosmos, Stuttgart

    Google Scholar 

  • Boatman ND, Parry HR, Bishop JD, Cuthbertson AGS (2007) Impacts of agricultural change on farmland biodiversity in the UK. In: Hester RE, Harrison RM (eds) Biodiversity under threat. Issues in environmental science and technology, No. 25. The Royal Society of Chemistry, Cambridge, pp 1–32

    Chapter  Google Scholar 

  • Buri P, Arlettaz R, Humbert JY (2013) Delaying mowing and leaving uncut refuges boosts orthopterans in extensively managed meadows: evidence drawn from field-scale experimentation. Agric Ecosyst Environ 181:22–30. doi:10.1016/j.agee.2013.09.003

    Article  Google Scholar 

  • Davis HN, Currie RS, French BW, Buschman LL (2009) Impact of land management practices on carabids (Coleoptera: Carabidae) and other arthropods on the western high plains of North America. Southwest Entomol 34(1):43–59. doi:10.3958/059.034.0104

    Article  Google Scholar 

  • Degefie DT, Fleischer E, Klemm O, Tolstikov A, Soromotin A, Soromotin O (2014) Climate extremes in South Western Siberia: past and future. Stoch Environ Res Risk Assess 28:2161–2173. doi:10.1007/s00477-014-0872-9

    Article  Google Scholar 

  • Dengler J, Janišová M, Török P, Wellstein C (2014) Biodiversity of Palaearctic grasslands: a synthesis. Agric Ecosyst Environ 182:1–14. doi:10.1016/j.agee.2013.12.015

    Article  Google Scholar 

  • Didukh YP (2011) The ecological scales for the species of Ukrainian flora and their use in 433 synphytoindication. Phytosociocentre, Kiev

    Google Scholar 

  • Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, García Marquéz JR, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. doi:10.1111/j.1600-0587.2012.07348.x

    Article  Google Scholar 

  • Dover JW, Spencer S, Collins S, Hadjigeorgiou I, Rescia A (2011) Grassland butterflies and low intensity farming in Europe. J Insect Conserv 15:129–137. doi:10.1007/s10841-010-9332-0

    Article  Google Scholar 

  • Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67(3):345–366

    Google Scholar 

  • Ermakov N, Dring J, Rodwell J (2000) Classification of continental hemiboreal forests of Northasia. Braun-Blanquetia 28:1–129

    Google Scholar 

  • Essl F, Dirnböck T (2012) What determines Orthoptera species distribution and richness in temperate semi-natural dry grassland remnants? Biodivers Conserv 21:2525–2537. doi:10.1007/s10531-012-0315-1

    Article  Google Scholar 

  • Fahrig L, Baudry J, Brotons L, Burel FG, Crist TO, Fuller RF, Sirami C, Siriwardena GM, Martin JL (2011) Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecol Lett 14:101–112. doi:10.1111/j.1461-0248.2010.01559.x

    Article  PubMed  Google Scholar 

  • Fartmann T, Kraemer B, Stelzner F, Poniatowski D (2012) Orthoptera as ecological indicators for succession in steppe grassland. Ecol Indic 20:337–344. doi:10.1016/j.ecolind.2012.03.002

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772

    Article  CAS  PubMed  Google Scholar 

  • Fonderflick J, Besnard A, Beuret A, Dalmais M, Schatz B (2014) The impact of grazing management on Orthoptera abundance varies over the season in Mediterranean steppe-like grassland. Acta Oecol 60:7–16. doi:10.1016/j.actao.2014.07.001

    Article  Google Scholar 

  • Gardiner T (2007) Orthoptera of crossfield and headland footpaths in arable farmland. J Orthop Res 16(2):127–133. doi:10.1665/1082-6467(2007)16[127:OOCAHF]2.0.CO;2

    Article  Google Scholar 

  • Gardiner T, Dover J (2008) Is microclimate important for Orthoptera in open landscapes? J Insect Conserv 12:705–709. doi:10.1007/s10841-007-9104-7

    Article  Google Scholar 

  • Gardiner T, Hassall M (2009) Does microclimate affect grasshopper populations after cutting of hay in improved grassland? J Insect Conserv 13:97–102. doi:10.1007/s10841-007-9129-y

    Article  Google Scholar 

  • Gardiner T, Hill J (2006) A comparison of three sampling techniques used to estimate population density and assemblage diversity of Orthoptera. J Orthop Res 15:45–51. doi:10.1665/1082-6467(2006)15[45:ACOTST]2.0.CO;2

    Article  Google Scholar 

  • Gardiner T, Pye M, Field R, Hill J (2002) The influence of sward height and vegetation composition in determining the habitat preferences of three Chorthippus species (Orthoptera: Acrididae) in Chelmsford, Essex, UK. J Orthoptera Res 11:207–213. doi:10.1665/1082-6467(2002)011[0207:TIOSHA]2.0.CO;2

    Article  Google Scholar 

  • Gardiner T, Gardiner M, Hill J (2005) The effect of pasture improvement and burning on Orthoptera populations of Culm grasslands in northwest Devon, UK. J Orthoptera Res 14:153–159. doi:10.1665/1082-6467(2002)011[0207:TIOSHA]2.0.CO;2

    Article  Google Scholar 

  • Gonthier DJ, Ennis KK, Farinas S, Hsieh HY, Iverson AL, Batary P, Rudolphi J, Tscharntke T, Cardinale BJ, Perfecto I (2014) Biodiversity conservation in agriculture requires a multi-scale approach. Proc R Soc B 281:20141358. doi:10.1098/rspb.2014.1358

    Article  PubMed  PubMed Central  Google Scholar 

  • Hochkirch A (2014) Gampsocleis glabra. The IUCN Red List of Threatened Species. Version 2014.3. www.iucnredlist.org. Downloaded on 5 Mar 2015

  • Humbert JY, Ghazoul J, Richner N, Walter T (2012) Uncut grass refuges mitigate the impact of mechanical meadow harvesting on orthopterans. Biol Conserv 152:96–101. doi:10.1016/j.biocon.2012.03.015

    Article  Google Scholar 

  • IBM Corp (2013) IBM SPSS Statistics for Windows, Version 22.0. IBM Corp, Armonk

    Google Scholar 

  • Jerrentrup JS, Wrage-Mönnig N, Röver KU, Isselstein J (2014) Grazing intensity affects insect diversity via sward structure and heterogeneity in a long-term experiment. J Appl Ecol 51:968–977. doi:10.1111/1365-2664.12244

    Article  Google Scholar 

  • Kamp J, Urazaliev R, Donald P, Hölzel N (2011) Post-Soviet agricultural change predicts future declines after recent recovery in Eurasian steppe bird populations. Biol Conserv 144:2607–2614. doi:10.1016/j.biocon.2011.07.010

    Article  Google Scholar 

  • Kämpf I, Mathar W, Kuzmin I, Hölzel N, Kiehl K (2016) Post-Soviet recovery of grassland vegetation on abandoned fields in the forest steppe zone of Western Siberia. Biodivers Conserv. doi:10.1007/s10531-016-1078-x (this SI)

    Google Scholar 

  • Kleijn D, Sutherland DJ (2003) How effective are European agri-environment schemes in conserving and promoting biodiversity? J Appl Ecol 40:947–969. doi:10.1111/j.1365-2664.2003.00868.x

    Article  Google Scholar 

  • Kruess A, Tscharntke T (2002) Grazing intensity and the diversity of Orthoptera, butterflies and trapnesting bees and wasps. Conserv Biol 16:1570–1580. doi:10.1046/j.1523-1739.2002.01334.x

    Article  Google Scholar 

  • Kühling I, Broll G, Trautz D (2016) Spatio-temporal analysis of agricultural land-use intensity across the Western Siberian grain belt. Sci Total Environ 544:271–280. doi:10.1016/j.scitotenv.2015.11.129

    Article  PubMed  Google Scholar 

  • Littlewood NA, Stewart AJA, Woodcock BA (2012) Science into practice—how can fundamental science contribute to better management of grasslands for invertebrates? Insect Conserv Divers 5:1–8. doi:10.1111/j.1752-4598.2011.00174.x

    Article  Google Scholar 

  • Manetti P, Faberi AJ, Clemente NL, López AN (2013) Macrofauna activity density in contrasting tillage systems in Buenos Aires Province, Argentina. Agron J 105(6):1780–1786. doi:10.2134/agronj2013.0129

    Article  Google Scholar 

  • Marini L, Fontana P, Scotton M, Klimek S (2008) Vascular plant and Orthoptera diversity in relation to grassland management and landscape composition in the European Alps. J Appl Ecol 45:361–370. doi:10.1111/j.1365-2664.2007.01402.x

    Article  Google Scholar 

  • Marini L, Fontana P, Battisti A, Gaston KJ (2009a) Agricultural management, vegetation traits and landscape drive orthopteran and butterfly diversity in a grassland–forest mosaic: a multi-scale approach. Insect Conserv Divers 2:213–220. doi:10.1111/j.1752-4598.2009.00053.x

    Article  Google Scholar 

  • Marini L, Fontana P, Battisti A, Gaston KJ (2009b) Response of orthopteran diversity to abandonment of semi-natural meadows. Agric Ecosyst Environ 132:232–236. doi:10.1016/j.agee.2009.04.003

    Article  Google Scholar 

  • Marshall EJP, West TM, Kleijn D (2006) Impacts of an agri-environment field margin prescription on the flora and fauna of arable farmland in different landscapes. Agric Ecosyst Environ 113:36–44. doi:10.1016/j.agee.2005.08.036

    Article  Google Scholar 

  • Mathar WP, Kämpf I, Kleinebecker T, Kuzmin I, Tolstikov A, Tupitsin S, Hölzel N (2016) Floristic diversity of meadow steppes in the Western Siberian Plain: effects of abiotic site conditions, management and landscape structure. Biodivers Conserv. doi:10.1007/s10531-015-1023-4 (this SI)

    Google Scholar 

  • McCune B, Mefford MJ (2006) PC-ORD. Multivariate analysis of ecological data, Version 5.0 for Windows. MjM Software, Gleneden Beach

    Google Scholar 

  • Oliver T, Roy DB, Hill JK, Brereton T, Thomas CD (2010) Heterogeneous landscapes promote population stability. Ecol Lett 13:473–484. doi:10.1111/j.1461-0248.2010.01441.x

    Article  PubMed  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GVN, Underwood EC, D’Amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt TF, Ricketts TH, Kura Y, Lamoreux JF, Wettengel WW, Hedao P, Kassem KR (2004) Terrestrial ecoregions of the world: a new map of life on earth. Bioscience 51:933–938. doi:10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

    Article  Google Scholar 

  • Plieninger T, Höchtl F, Spek T (2006) Traditional land-use and nature conservation in European rural landscapes. Environ Sci Policy 9:317–321. doi:10.1016/j.envsci.2006.03.001

    Article  Google Scholar 

  • Poniatowski D, Fartmann T (2008) The classification of insect communities: lessons from orthopteran assemblages of semi-dry calcareous grasslands in central Germany. Eur J Entomol 105:659–671. doi:10.14411/eje.2008.090

    Article  Google Scholar 

  • Poniatowski D, Defaut B, Llucia-Pomares D, Fartmann T (2009) The Orthoptera fauna of the Pyrenean region—a field guide. Articulata Beiheft 14:1–143

    Google Scholar 

  • Poschlod P, Bakker JP, Kahmen J (2005) Changing land use and its impact on biodiversity. Basic Appl Ecol 6:93–98. doi:10.1016/j.baae.2004.12.001

    Article  Google Scholar 

  • Racz IA, Deri E, Kisfali M, Batiz Z, Varga K, Szabo G, Lengyel S (2013) Early changes of orthopteran assemblages after grassland restoration: a comparison of space-fortime substitution versus repeated measures monitoring. Biodivers Conserv 22:2321–2335. doi:10.1007/s10531-013-0466-8

    Article  Google Scholar 

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reinhardt K, Köhler G, Maas S, Detzel P (2005) Low dispersal ability and habitat specificity promote extinctions in rare but not widespread species: the Orthoptera of Germany. Ecography 28:593–602. doi:10.1111/j.2005.0906-7590.04285.x

    Article  Google Scholar 

  • Ruprecht E (2006) Successfully recovered grassland: a promising example from Romanian old-fields. Restor Ecol 14:473–480. doi:10.1111/j.1526-100X.2006.00155.x

    Article  Google Scholar 

  • Schierhorn F, Muller D, Beringer T, Prishchepov AV, Kuemmerle T, Balmann A (2013) Post-Soviet cropland abandonment and carbon sequestration in European Russia, Ukraine, and Belarus. Glob Biogeochem Cycles 27:1175–1185. doi:10.1002/2013GB004654

    Article  CAS  Google Scholar 

  • Selezneva NS (1973) Forest steppe. In: Gwosdezkji NA (ed) Physical geographical zoning of Tyumen Oblast. Moscow University Press, Moscow, pp 144–174

    Google Scholar 

  • Smelansky I, Tishkov A (2012) The steppe biome in Russia: ecosystem services, conservation status, and actual challenges. In: Werger MJA, van Staalduinen MA (eds) Eurasian steppes. Ecological problems and livelihoods in a changing world. Springer, Dordrecht, pp 45–101

    Chapter  Google Scholar 

  • Stoate C, Baldi A, Beja P, Boatman ND, Herzon I, Van Doorn A, De Snoo GR, Rakosy L, Ramwell C (2009) Ecological impacts of early 21st century agricultural change in Europe—a review. J Environ Manag 91:22–46. doi:10.1016/j.jenvman.2009.07.005

    Article  CAS  Google Scholar 

  • Sutcliffe LME, Batary P, Becker T, Orci KM, Leuschner C (2015) Both local and landscape factors determine plant and Orthoptera diversity in the semi-natural grasslands of Transylvania, Romania. Biodivers Conserv 24:229–245. doi:10.1007/s10531-014-0804-5

    Article  Google Scholar 

  • Szijj J (2004) Die Springschrecken Europas. Neue Brehm-Bücherei 652, Westarp Wissenschaften, Hohenwarsleben

  • ter Braak JF, Smilauer P (1997–2013) Canoco 5—software for multivariate data exploration, testing and summarization. Biometris, Plant Research International, The Netherlands

  • Tonhasca A Jr (1994) Response of soybean herbivores to two agronomic practices increasing agroecosystem diversity. Agric Ecosyst Environ 48:57–65

    Article  Google Scholar 

  • Tscharntke T, Klein AM, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity—ecosystem service management. Ecol Lett 8:857–874. doi:10.1111/j.1461-0248.2005.00782.x

    Article  Google Scholar 

  • Tscharntke T, Tylianakis JM, Trand TA, Didham RK, Fahrig L, Batary P, Bengtsson J, Clough Y, Crist TO, Dormann CF, Ewers RM, Fründ J, Holt RD, Holzschuh A, Klein AM, Kleijn D, Kremen C, Landis DA, Laurance W, Lindenmayer D, Scherber C, Sodhi N, Steffan-Dewenter I, Thies C, van der Putten WH, Westphal C (2012) Landscape moderation of biodiversity patterns and processes - eight hypotheses. Biol Rev 87:661–685. doi:10.1111/j.1469-185X.2011.00216.x

    Article  PubMed  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, Dordrecht

    Book  Google Scholar 

  • Weiss N, Zucchi H, Hochkirch A (2013) The effects of grassland management and aspect on Orthoptera diversity and abundance: site conditions are as important as management. Biodivers Conserv 22:2167–2178. doi:10.1007/s10531-012-0398-8

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Johannes Kamp and four anonymous reviewers for valuable comments on an earlier version of the manuscript. Besides, we thank Johannes Kamp and Andrei Tolstikov for organisation of our stays during the field work in Russia. This work was conducted as part of project SASCHA (‘Sustainable land management and adaptation strategies to climate change for the Western Siberian grain-belt’). We are grateful for funding by the German Government, Federal Ministry of Education and Research within their Sustainable Land Management funding framework (Funding Reference 01LL0906F/D).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Weking.

Additional information

Communicated by Didem Ambarlı.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weking, S., Kämpf, I., Mathar, W. et al. Effects of land use and landscape patterns on Orthoptera communities in the Western Siberian forest steppe. Biodivers Conserv 25, 2341–2359 (2016). https://doi.org/10.1007/s10531-016-1107-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-016-1107-9

Keywords

Navigation