Skip to main content

Advertisement

Log in

Mexican alpine plants in the face of global warming: potential extinction within a specialized assemblage of narrow endemics

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Alpine ecosystems occur under extreme climatic conditions and, as a result, house a unique and vulnerable biota. They are very scarce at tropical latitudes; in Mexico occur mainly along the Trans-Mexican Volcanic Belt, where species richness is not high but narrow endemics stand out. We investigate the effects of climate change under hypothesized contrasting climate warming scenarios using ecological niche modeling of five microendemic alpine species. Occurrence data was obtained mainly from field trips, but herbaria were also examined. A total of 21 climatic and topographic variables, as well as individual selections of 12–16 variables were employed to construct models with Maxent and GARP. Depending on the number of occurrences, current models were validated with Partial-ROC or Jackknife procedures; and projections to 2050 and 2070 were made using two Representative Concentration Pathways and two Global Circulation Models. All species’ models showed a clear pattern of contraction under the explored scenarios; over 58 % of contemporary climatic distribution disappeared, suggesting that analyzed species face imminent extinction due to climatic habitat loss. The models are useful in representing the endemic component of Mexican alpine grassland by reciprocal correspondence in geographic distribution, and we consider it as a highly endangered ecosystem due to climate change, which is probably applicable to other tropical alpine ecosystems. The Pico de Orizaba volcano seems the best option to preserve due to its extension and elevation. However, further studies at finer scales are needed to improve in situ preservation and conservation strategies that include translocation, assisted migration and seed banking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen CD, Macalady AK, Chenchouni H et al (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684

    Article  Google Scholar 

  • Almeida-Leñero L, Escamilla M, Giménez de Azcárate J, González-Trápaga A, Cleef AM (2007) Vegetación alpina de los volcanes Popocatépetl, Iztaccíhuatl y Nevado de Colima. In: Luna I, Morrone JJ, Espinosa D (eds) Biodiversidad de la Faja Volcánica Transmexicana. Universidad Nacional de México, México, pp 179–198

    Google Scholar 

  • Anderson RP, Lew D, Peterson AT (2003) Evaluating predictive models of species’ distributions: criteria for selecting optimal models. Ecol Model 162:211–232

    Article  Google Scholar 

  • Andrés N, Zamorano JJ, Sanjosé JJ, Atkinson A, Palacios D (2007) Glacier retreat during the recent eruptive period of Popocatépetl volcano, Mexico. Ann Glaciol 45:73–82

    Article  Google Scholar 

  • Araújo MB, Luoto M (2007) The importance of biotic interactions for modeling species distributions under climate change. Glob Ecol Biogeogr 16:743–753

    Article  Google Scholar 

  • Barve N (2008) Tool for partial-ROC (Biodiversity Institute, Lawrence, KS), ver 1.0

  • Barve N, Barve V, Jiménez-Valverde A, Lira-Noriega A, Maher SP, Peterson AT, Soberón J, Villalobos F (2011) The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecol Model 222:1810–1819

    Article  Google Scholar 

  • Boisvenue C, Running SW (2006) Impacts of climate change on natural forest productivity evidence since the middle of the 20th century. Glob Chang Biol 12:1–21

    Article  Google Scholar 

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Broennimann O, Thuiller W, Hughes G, Midgley G, Alkemade J, Guisan A (2006) Do geographic distribution, niche property and life form explain plants’ vulnerability to global change? Glob Chang Biol 12:1079–1093

    Article  Google Scholar 

  • Broennimann O, Treier UA, Müller-Schärer H, Thuiller W, Peterson AT, Guisan A (2007) Evidence of climatic niche shift during biological invasion. Ecol Lett 10:701–709

    Article  CAS  PubMed  Google Scholar 

  • Carlson BZ, Randin CF, Boulangeat I, Lavergne S, Thuiller W, Choler P (2013) Working toward integrated models of alpine plant distribution. Alp Bot 123:41–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Castellanos-Acuña D, Lindig-Cisneros R, Sáenz-Romero C (2015) Altitudinal assisted migration of Mexican pines as an adaptation to climate change. Ecosphere 6:1–16

    Article  Google Scholar 

  • Christensen JH, Hewiston B, Busuioc A et al (2007) Regional climate proyections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change: the physical science basis. Contribution of working group I to the forth assessment report of the intergovernmental panel on climate change, Cambridge University Press, Cambridge, and New York, pp 847–940

  • CONANP (Comisión Nacional de Áreas Naturales Protegidas). http://iztapopo.conanp.gob.mx. Accessed March 2013

  • Cuesta F, Muriel P, Beck S, Meneses RI, Halloy S, Salgado S, Ortiz E, Becerra MT (eds) (2012) Biodiversidad y Cambio Climático en los Andes Tropicales - Conformación de una red de investigación para monitorear sus impactos y delinear acciones de adaptación. Red Gloria-Andes, Lima-Quito, p 180

    Google Scholar 

  • Davis AJ, Junkinson LS, Lawton JH, Shorbooks B, Wood S (1998) Making mistakes when predicting shifts in species range in response to global warming. Nature 391:783–786

    Article  CAS  PubMed  Google Scholar 

  • Delgado-Granados H (1997) The glaciers of Popoccatépetl volcano (Mexico). Quat Int 43–44:53–60

    Article  Google Scholar 

  • Demant A (1978) Características del Eje Neovolcánico Transmexicano y sus problemas de interpretación. Universidad Nacional Autónoma de México, Revista del Instituto de Geología 2:172–187

  • Dobrowski S (2010) A climatic basis for micro-refugia: the influence of terrain on climate. Glob Chang Biol 17:1022–1035

    Article  Google Scholar 

  • Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151

    Article  Google Scholar 

  • Emiliani C (1966) Paleotemperature analysis of Caribbean cores P-6-304-8 and P-6-304-9 and a generalized temperature curve for the past 425 000 years. J Geol 74:109–124

    Article  CAS  Google Scholar 

  • ESRI (Environmental Systems Resource Institute) (2009) ArcMap 9.2. ESRI, Redlands

  • Fa JE, Morales LM (1991) Mammals and protected areas in the Trans-Mexican Neovolcanic Belt. In: Mares MA, Schmidly DJ (eds) Latin American mammalogy: history, biodiversity, and conservation. University of Oklahoma Press, Norman, pp 199–226

    Google Scholar 

  • Feeley K, Silman M (2010) Land-use and climate change effects on population size and extinction risk of Andean plants. Glob Chang Biol 16:3215–3222

    Article  Google Scholar 

  • Ferrari L, Orozco-Esquivel T, Manea V, Manea M (2012) The dynamic history of the Trans-Mexican Volcanic Belt and the Mexico subduction zone. Tectonophysics 522–523:122–149

    Article  Google Scholar 

  • Franklin J, Wejnert KE, Hathaway SA, Rochester CJ, Fisher RN (2009) Effect of species rarity on the accuracy of species distribution models for reptiles and amphibians in southern California. Divers Distrib 15:167–177

    Article  Google Scholar 

  • Gámez N, Escalante T, Rodríguez G, Linaje M, Morrone JJ (2012) Caracterización biogeográfica de la Faja Volcánica Transmexicana y análisis de los patrones de distribución de su mastofauna. Rev Mex Biodivers 83:258–272

    Google Scholar 

  • García-Ruiz I (2001) Flora del Parque Nacional Pico de Tancítaro, Michoacán. Instituto Politécnico Nacional. Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional-Michoacán. Informe final SNIB-CONABIO proyecto No. H304. México, p 58

  • Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD (2010) A framework community interactions under climate change. Trends Ecol Evol 25:325–331

    Article  PubMed  Google Scholar 

  • Gómez-Tuena A, Orozco-Esquivel MT, Ferrari L (2007) Igneous petrogenesis of the Trans-Mexican Volcanic Belt. Geol Soc Am Spec Pap 422:129–181

    Google Scholar 

  • Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8:993–1009

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186

    Article  Google Scholar 

  • Guisan A, Zimmermann NE, Edith J, Graham CH, Phillips S, Peterson AT (2007) What matters for predicting the occurrences of trees: techniques, data, or species’ characteristics? Ecol Monogr 77:615–630

    Article  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4:9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm

  • Hernández PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • http://florademexico.com/alpina/index.php. Accessed Aug 2014

  • Hutchinson E (1957) Concluding remarks. Cold spring harbor symposium on quantitative biology 22:415–427

  • INEGI (Instituto Nacional de Estadística y Geografía) (2011) Estadísticas a propósito del día internacional de las montañas, Aguascalientes, p 12

  • Jakob SS, Martinez-Meyer E, Blattner FR (2009) Phylogeographic analyses and paleodistribution modeling indicate Pleistocene in situ survival of Hordeum species (Poaceae) in southern Patagonia without genetic or spatial restriction. Mol Biol Evol 26:907–923

    Article  CAS  PubMed  Google Scholar 

  • Jetz W, Wilcove D, Dobson A (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol 5:1211–1219

    Article  CAS  Google Scholar 

  • Koch M, Al-Shehbaz IA (2002) Molecular data indicate complex intra-& intercontinental differentiation of American Draba (Brassicaceae). Ann Mo Bot Gard 89:88–109

    Article  Google Scholar 

  • Lomba A, Pellissier L, Randin CF, Vicente J, Moreira F, Honrado J, Guisan A (2010) Overcoming the rare species modelling paradox: a novel hierarchical framework applied to an Iberian endemic plant. Biol Conserv 143:2647–2657

    Article  Google Scholar 

  • Lugo J (1984) Geomorfología del sur de la cuenca de México. Instituto de Geografía, Universidad Nacional Autónoma de México, Serie Varia 8:1–95

  • Martínez-Meyer E (2005) Climate change and biodiversity: some considerations in forecasting shifts in species’ potential distributions. Biodivers Inform 2:42–55

    Article  Google Scholar 

  • Mateo RG, Felicísimo ÁM, Muñoz J (2010) Effects of the number of presences on reliability and stability of MARS species distribution models: the importance of regional niche variation and ecological heterogeneity. J Veg Sci 21:908–922

    Article  Google Scholar 

  • McDonald JA (1990) The alpine-subalpine flora of northeastern Mexico. Sida 14:21–28

    Google Scholar 

  • McDonald JA (1998) Fitogeografía e historia de la flora alpina-subaplina del noreste de México. In: Ramamoorthy T, Bye R, Lot A, Fa A (eds) Diversidad Biológica de México. Instituto de Biología, Universidad Nacional de México, México, pp 665–686

    Google Scholar 

  • McPherson JM, Jetz W, Rogers DJ (2004) The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J Appl Ecol 41:811–823

    Article  Google Scholar 

  • Miranda F (1952) La Vegetación de Chiapas. Ediciones del Gobierno del Estado 1:1–334

    Google Scholar 

  • Moore ID, Grayson RB, Ladson AR (1991) Digital terrain modeling: a review of hydrological, geomorphological and biological applications. Hydrol Process 51:3–30

    Article  Google Scholar 

  • Morrone JJ (2010) Fundamental biogeographic patterns across the Mexican Transition Zone: an evolutionary approach. Ecography 33:335–361

    Google Scholar 

  • Narave H (1985) La vegetación del Cofre de Perote, Veracruz. Biótica 1:35–57

    Google Scholar 

  • Neyra JJ (2012) Guía de las altas montañas de México y una de Guatemala. Neyra Jáuregui Ediciones - Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México, p 413

  • Parisod C, Wipf S, Güsewell S (2010) Plant and vegetation responses to a changing environment: an alpine issue. Bot Helv 120:83–84

    Article  Google Scholar 

  • Parra-Olea G, Martínez-Meyer E, Pérez-Ponce de León G (2005) Forecasting climate change effects on salamander distribution in the highlands of Central Mexico. Biotropica 37:202–208

    Article  Google Scholar 

  • Pauli H, Gottfried M, Dullinger S et al (2012) Recent plant diversity changes on Europe’s mountain summits. Science 336:353–355

    Article  CAS  PubMed  Google Scholar 

  • Pearson RG, Raxworthy C, Nakamura M, Peterson AT (2007) Predicting species’ distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117

    Article  Google Scholar 

  • Peterson AT (2003a) Predicting the geography of species’ invasions via ecological niche modeling. Q Rev Biol 78:419–433

    Article  PubMed  Google Scholar 

  • Peterson AT (2003b) Projected climate change effects on Rocky Mountain and Great Plains birds: generalities of biodiversity consequences. Glob Chang Biol 9:647–655

    Article  Google Scholar 

  • Peterson AT, Ortega-Huerta MA, Bartley J, Sánchez-Cordero V, Soberón J, Buddemeler RH, Stockwell D (2002) Future projections for Mexican faunas under global climate change scenarios. Nature 416:626–629

    Article  CAS  PubMed  Google Scholar 

  • Peterson AT, Tian H, Martínez-Meyer E, Soberón J, Sánchez-Cordero V, Huntley B (2005) Modeling distributional shifts of individual Species and Biomes. In: Lovejoy T, Hannah L (eds) Climate change and biodiversity climate change and biodiversity. Yale University Press, New Heaven, pp 211–228

    Google Scholar 

  • Peterson AT, Papes M, Eaton M (2007) Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent. Ecography 30:550–560

    Article  Google Scholar 

  • Peterson AT, Papes M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72

    Article  Google Scholar 

  • Peterson AT, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geographic distributions (Monographs in population biology; no. 49). Princeton University Press. Princeton, p 328

  • Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Pounds AJ, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    Article  CAS  Google Scholar 

  • Proosdij ASJ, Sosef MSM, Wieringa JJ, Raes N (2015) Minimum required number of specimen records to develop accurate species distribution models. Ecography. doi:10.1111/ecog.01509

    Google Scholar 

  • Ramírez-Villegas J, Cuesta CF, Devenish C, Peralvo M, Jarvis A, Arnillas C (2014) Using species distributions models for designing conservation strategies of Tropical Andean biodiversity under climate change. J Nat Conserv 22:391–404

    Article  Google Scholar 

  • Rebelo H, Tarroso P, Jones G (2010) Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob Chang Biol 16:561–576

    Article  Google Scholar 

  • Rehfeldt G, Tchebakova ND, Parfenova YI, Wykoff WR, Kuzmina NA, Milyutin LI (2002) Intraspecific responses to climate in Pinus sylvestris. Glob Chang Biol 8:912–929

    Article  Google Scholar 

  • Rehfeldt G, Crookston N, Sáenz C, Campbell E (2012) North American vegetation model for land-use planning in a changing climate: a solution to large classification problems. Ecol Appl 22:119–141

    Article  PubMed  Google Scholar 

  • Ricketts TH, Dinerstein E, Boucher T et al (2005) Pinpointing and preventing imminent extinctions. Proc Natl Acad Sci USA 102:18497–18501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinnhofer LJ, Roura-Pascual N, Arthofer W et al (2012) Iterative species distribution modelling and ground validation in endemism research: an Alpine jumping bristletail example. Biodivers Conserv 21:2845–2863

    Article  Google Scholar 

  • Roberts DR, Hamann A (2012) Predicting potential climate change impacts with bioclimate envelope models: a palaeoecological perspective. Glob Ecol Biogeogr 21:121–133

    Article  Google Scholar 

  • Rojas-Soto O, Martínez-Meyer E, Navarro-Sigüeza AG, Oliveras de Ita A, Gómez de Silva H, Peterson AT (2008) Modeling distributions of disjunct populations of the Sierra Madre Sparrow. J Field Ornithol 79:245–253

    Article  Google Scholar 

  • Rojas-Soto OR, Sosa V, Ornelas JF (2012) Forecasting cloud forest in eastern and southern Mexico: conservation insights under future climate change scenarios. Biodivers Conserv 21:2671–2690

    Article  Google Scholar 

  • Rzedowski J (2006) Vegetación de México. 1ra. Edición digital, Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, México, p 504

  • Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J Biogeogr 38:406–416

    Article  Google Scholar 

  • Schrag AM, Bunn AG, Graumlich LJ (2008) Influence of bioclimatic variables on tree line conifer distribution in the Greater Yellowstone Ecosystem: implications for species of conservation concern. J Biogeogr 35:698–710

    Article  Google Scholar 

  • Seager R, Ting M, Held I et al (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184

    Article  CAS  PubMed  Google Scholar 

  • Soberón JM, Nakamura N (2009) Niches and distributional areas: concepts, methods, and assumptions. Proc Natl Acad Sci USA 106:19644–19650

    Article  PubMed  PubMed Central  Google Scholar 

  • Soberón JM, Peterson AT (2005) Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers Inform 2:1–10

    Article  Google Scholar 

  • Sousa-Silva R, Alves P, Honrado J, Lomba A (2014) Improving the assessment and reporting on rare and endangered species through species distribution models. Glob Ecol Conserv 2:226–237

    Article  Google Scholar 

  • Still CJ, Foster PN, Schneider SH (1999) Simulating the effects of climate change on tropical montane cloud forests. Nature 398:608–610

    Article  CAS  Google Scholar 

  • Stockwell D, Peters D (1999) GARP modelling system: problems and solutions to automated -spatial prediction. Int J Geogr Inf Sci 13:143–158

    Article  Google Scholar 

  • Stockwell D, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Model 148:1–13

    Article  Google Scholar 

  • Suárez-Mota ME, Téllez-Valdés O, Lira-Saade R, Villaseñor JL (2013) Una regionalización de la Faja Volcánica Transmexicana con base en su riqueza florística. Bot Sci 91:93–105

    Article  Google Scholar 

  • Synes NW, Osborne PE (2011) Choice of predictor variables as a source of uncertainty in continental-scale species distribution modeling under climate change. Glob Ecol Biogeogr 20:904–914

    Article  Google Scholar 

  • Tchebakova NM, Rehfeldt GE, Parfenova EI (2005) Impacts of climate change on the distribution of Larix spp. and Pinus sylvestris and their clime types in Siberia. Mitig Adapt Strat Glob Chang 11:861–882

    Google Scholar 

  • Téllez-Valdés O, Dávila-Aranda P, Lira-Saade R (2006) The effects of climate change on the long-term conservation of Fagus grandifolia var. mexicana, an important species of the cloud forest in eastern Mexico. Biodivers Conserv 15:1095–1107

    Article  Google Scholar 

  • Thomas CD, Cameron A, Green RE et al (2004) Extinction risk from climate change. Nature 427:145–148

    Article  CAS  PubMed  Google Scholar 

  • Tingley MW, Monahan WB, Beissinger SR, Moritz C (2009) Birds track their Grinnellian niche through a century of climate change. Proc Natl Acad Sci USA 106:19637–19643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsoar A, Allouche O, Steinitz O, Rotem D, Kadmon R (2007) Comparative evaluation of presence only methods for modelling species distribution. Divers Distrib 13:397–405

    Article  Google Scholar 

  • USGS (United States Geological Survey) (2001) HYDRO1k elevation derivative database, U.S. geological survey

  • Villaseñor JL, Maeda P, Rosell JA, Ortiz E (2007) Plant families’ predictors of plant biodiversity in Mexico. Divers Distrib 13:871–876

    Article  Google Scholar 

  • Warren DL, Glor RE, Turelli M (2008) Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62:2868–2883

    Article  PubMed  Google Scholar 

  • Webster GL (1961) The altitudinal limits of vascular plants. Ecology 42:587–590

    Article  Google Scholar 

  • Williams J, Jackson S (2007) Novel climates, no-analog communities, and ecological surprises. Front Ecol Environ 5:475–482

    Article  Google Scholar 

  • Wisz, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A, NCEAS Predicting Species Distributions Working Group (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO) for financing the project JF076 “Flora Alpina del Centro de México” from which we obtained the data used in this study; the Natural Protected Areas of Pico de Orizaba, Iztaccíhuatl-Popocatépetl, La Malinche and Nevado de Colima, as well as the Nevado de Toluca Special Protection Area for permitting us to collect; the herbaria ENCB, FCME, IBUG, IEB, MEXU, MICH, and XAL for allowing us consult their material; Libertad Arredondo and Rodrigo Hernández for hard worked on the field and herbarium collections; Antonio González and two anonymous reviewers for enhancing the manuscript, Mauricio Ortega for providing valuable technical assistance, and Damián Piña for helping to prepare some of the figures. This paper is part of a doctoral thesis by the first author, who thanks the Consejo Nacional de Ciencia y Tecnología (CONACYT) for providing a fellowship (#226606) during her Ph.D. studies in the Instituto de Ecología, A.C. graduate program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Ruiz-Sanchez Dr..

Additional information

Communicated by David Hawksworth.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramírez-Amezcua, Y., Steinmann, V.W., Ruiz-Sanchez, E. et al. Mexican alpine plants in the face of global warming: potential extinction within a specialized assemblage of narrow endemics. Biodivers Conserv 25, 865–885 (2016). https://doi.org/10.1007/s10531-016-1094-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-016-1094-x

Keywords

Navigation