Skip to main content

Advertisement

Log in

Vegetation and soil responses to livestock grazing in Central Asian grasslands: a review of Chinese literature

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Grasslands in northern China and the Qinghai-Tibetan plateau are particularly important to both ecosystem functioning and pastoral livelihoods. Although there are numerous degradation studies on the effect of livestock grazing across the region, they are largely only published in Chinese, and most focus on single sites. Based on case studies from 100 sites, covering a mean annual precipitation gradient of 95–744 mm, we present a comprehensive, internationally accessible review on the impact of livestock grazing on vegetation and soils. We compared ungrazed or slightly grazed sites with moderately and heavily grazed sites by evaluating changes in two indicator groups: vegetation (plant species richness, vegetation cover, aboveground biomass, belowground biomass and root/shoot ratio) and soil (pH, bulk density, organic C, total N, total P and available P). Most indicators declined with intensified grazing, while soil pH, bulk density and belowground biomass increased. Available P showed no clear response. Variables within indicator groups were mostly linearly correlated at a given grazing intensity. Relative grazing effects on different indicators varied along specific abiotic gradients. Grazing responses of plant species richness, aboveground biomass, soil bulk density, total N and available P interacted with precipitation patterns, while grazing effects on belowground biomass were influenced by temperature. Elevation had impact on grazing responses of aboveground biomass and soil organic carbon. Complex grazing effects reflect both methodological inconsistency and ecological complexity. Further assessments should consider specific characteristics of different indicators in the context of the local environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addison J, Friedel M, Brown C, Davies J, Waldron S (2012) A critical review of degradation assumptions applied to Mongolia’s Gobi Desert. Rangel J 34:125–137

    Article  Google Scholar 

  • Akiyama T, Kawamura K (2007) Grassland degradation in China: methods of monitoring, management and restoration. Grassl Sci 53:1–17

    Article  Google Scholar 

  • Bagchi S, Ritchie ME (2010) Herbivore effects on above- and belowground plant production and soil nitrogen availability in the Trans-Himalayan shrub-steppes. Oecologia 164:1075–1082

    Article  PubMed  Google Scholar 

  • Bai YF, Wu JG, Pan QM et al (2007) Positive linear relationship between productivity and diversity: evidence from the Eurasian Steppe. J Appl Ecol 44:1023–1034

    Article  Google Scholar 

  • Bai YF, Wu JG, Xing Q et al (2008) Primary production and rain use efficiency across a precipitation gradient on the Mongolia plateau. Ecology 89:2140–2153

    Article  PubMed  Google Scholar 

  • Bai YF, Wu JG, Clark CM et al (2012) Grazing alters ecosystem functioning and C: N: P stoichiometry of grasslands along a regional precipitation gradient. J Appl Ecol 49:1204–1215

    Article  CAS  Google Scholar 

  • Bardgett RD, Wardle DA (2003) Herbivore-mediated linkages between aboveground and belowground communities. Ecology 84:2258–2268

    Article  Google Scholar 

  • Bardgett RD, Jones AC, Jones DL et al (2001) Soil microbial community patterns related to the history and intensity of grazing in sub-montane ecosystems. Soil Biol Biochem 33:1653–1664

    Article  CAS  Google Scholar 

  • Barger NN, Ojima DS, Belnap J et al (2004) Changes in plant functional groups, litter quality, and soil carbon and nitrogen mineralization with sheep grazing in an Inner Mongolian grassland. Rangel Ecol Manag 57:613–619

    Article  Google Scholar 

  • Burke IC, Lauenroth WK, Vinton MA et al (1998) Plant-soil interactions in temperate grasslands. Biogeochemistry 42:121–143

    Article  Google Scholar 

  • Cao J, Holden NM, Lü XT, Du G (2011) The effect of grazing management on plant species richness on the Qinghai-Tibetan Plateau. Grass Forage Sci 66:333–336

    Article  Google Scholar 

  • Cao J, Yeh ET, Holden NM et al (2013a) The roles of overgrazing, climate change and policy as drivers of degradation of China’s grasslands. Nomad Peoples 17:82–101

    Article  Google Scholar 

  • Cao J, Yeh ET, Holden NM et al (2013b) The effects of enclosures and land-use contracts on rangeland degradation on the Qinghai-Tibetan plateau. J Arid Environ 97:3–8

    Article  Google Scholar 

  • Chaneton EJ, Lemcoff JH, Lavado RS (1996) Nitrogen and phosphorus cycling in grazed and ungrazed plots in a temperate subhumid grassland in Argentina. J Appl Ecol 33:291–302

    Article  Google Scholar 

  • Chen Y, Yang K, He J et al (2011) Improving land surface temperature modeling for dry land of China. J Geophys Res Atmos 116:D20104

    Article  Google Scholar 

  • Chen H, Zhu Q, Peng C et al (2013) The impacts of climate change and human activities on biogeochemical cycles on the Qinghai-Tibetan Plateau. Glob Chang Biol 19:2940–2955

    Article  PubMed  Google Scholar 

  • Chen BX, Zhang XZ, Tao J et al (2014) The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau. Agric For Meteorol 189–190:11–18

    Article  Google Scholar 

  • Cheng JM, Wu GL, Zhao LP et al (2011a) Cumulative effects of 20-year exclusion of livestock grazing on above- and belowground biomass of typical steppe communities in arid areas of the Loess Plateau, China. Plant Soil Environ 57:40–44

    Article  Google Scholar 

  • Cheng Y, Tsubo M, Ito TY et al (2011b) Impact of rainfall variability and grazing pressure on plant diversity in Mongolian grasslands. J Arid Environ 75:471–476

    Article  Google Scholar 

  • Chou WW, Silver WL, Jackson RD et al (2008) The sensitivity of annual grassland carbon cycling to the quantity and timing of rainfall. Glob Chang Biol 14:1382–1394

    Article  Google Scholar 

  • Coughenour MB (1985) Graminoid responses to grazing by large herbivores: adaptations, exaptations, and interacting processes. Ann Missouri Bot Gard 72:852–863

    Article  Google Scholar 

  • Cowan PJ (2007) Geographic usage of the terms middle Asia and Central Asia. J Arid Environ 69:359–363

    Article  Google Scholar 

  • Cui XF, Graf HF (2009) Recent land cover changes on the Tibetan Plateau: a review. Clim Chang 94:47–61

    Article  Google Scholar 

  • Derner JD, Boutton TW, Briske DD (2006) Grazing and ecosystem carbon storage in the North American Great Plains. Plant Soil 280:77–90

    Article  CAS  Google Scholar 

  • Dong QM, Zhao XQ, Wu GL et al (2012) Response of soil properties to yak grazing intensity in a Kobresia parva-meadow on the Qinghai-Tibetan Plateau, China. J Soil Sci Plant Nutr 12:535–546

    Google Scholar 

  • Ellis JE (1995) Climate variability and complex ecosystem dynamics: implications for pastoral development. In: Scoones I (ed) Living with uncertainty: new directions in pastoral development in Africa. Intermediate Technology Publications, London, pp 37–46

    Chapter  Google Scholar 

  • Ellis JE, Swift DM (1988) Stability of African pastoral ecosystems : alternate paradigms and implications for development. J Range Manag 41:450–459

    Article  Google Scholar 

  • Fan JW, Wang K, Harris W et al (2009) Allocation of vegetation biomass across a climate-related gradient in the grasslands of Inner Mongolia. J Arid Environ 73:521–528

    Article  Google Scholar 

  • Fang JY, Yang YH, Ma WH et al (2010) Ecosystem carbon stocks and their changes in China’s grasslands. Sci China Life Sci 53:757–765

    Article  CAS  PubMed  Google Scholar 

  • Fernandez-Gimenez ME, Allen-Diaz B (1999) Testing a non-equilibrium model of rangeland vegetation dynamics in Mongolia. J Appl Ecol 36:871–885

    Article  Google Scholar 

  • Frank DA, Kuns MM, Guido DR (2002) Consumer control of grassland plant production. Ecology 83:602–606

    Article  Google Scholar 

  • Fu Y, Grumbine RE, Wilkes A et al (2012) Climate change adaptation among Tibetan pastoralists: challenges in enhancing local adaptation through policy support. Environ Manag 50:607–621

    Article  Google Scholar 

  • Gao YZ, Giese M, Lin S et al (2008) Belowground net primary productivity and biomass allocation of a grassland in Inner Mongolia is affected by grazing intensity. Plant Soil 307:41–50

    Article  CAS  Google Scholar 

  • Gao QZ, Wan YF, Li Y et al (2013) Effects of topography and human activity on the net primary productivity (NPP) of alpine grassland in northern Tibet from 1981 to 2004. Int J Remote Sens 34:2057–2069

    Article  Google Scholar 

  • Giese M, Brueck H, Gao Y et al (2013) N balance and cycling of Inner Mongolia typical steppe: a comprehensive case study of grazing effects. Ecol Monogr 83:195–219

    Article  Google Scholar 

  • Grime JP (1973) Competitive exclusion in herbaceous vegetation. Nature 242:344–347

    Article  Google Scholar 

  • Hafner S, Unteregelsbacher S, Seeber E et al (2012) Effect of grazing on carbon stocks and assimilate partitioning in a Tibetan montane pasture revealed by 13CO2 pulse labeling. Glob Chang Biol 18:528–538

    Article  Google Scholar 

  • Han WX, Fang JY, Guo DL, Zhang Y (2005) Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol 168:377–385

    Article  CAS  PubMed  Google Scholar 

  • Harris RB (2010) Rangeland degradation on the Qinghai-Tibetan plateau: a review of the evidence of its magnitude and causes. J Arid Environ 74:1–12

    Article  CAS  Google Scholar 

  • Hassink J (1994) Effects of soil texture and grassland management on soil organic C and N and rates of C and N mineralisation. Soil Biol Biochem 26:1221–1231

    Article  Google Scholar 

  • Haynes RJ, Williams PH (1992) Changes in soil solution composition and pH in urine-affected areas of pasture. J Soil Sci 43:323–334

    Article  CAS  Google Scholar 

  • He J, Yang K (2011) China Meteorological Forcing Dataset. Cold and Arid Regions Science Data Center at Lanzhou

  • He NP, Zhang YH, Yu Q et al (2011) Grazing intensity impacts soil carbon and nitrogen storage of continental steppe. Ecosphere 2:1–10. doi:10.1890/ES10-00017.1

    Article  Google Scholar 

  • He CY, Tian J, Gao B, Zhao YY (2015) Differentiating climate- and human-induced drivers of grassland degradation in the Liao River Basin, China. Environ Monit Assess 187:4199

    Article  PubMed  Google Scholar 

  • Holst J, Liu C, Yao Z et al (2007) Importance of point sources on regional nitrous oxide fluxes in semi-arid steppe of Inner Mongolia, China. Plant Soil 296:209–226

    Article  CAS  Google Scholar 

  • Huston MA (1994) Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, Cambridge

    Google Scholar 

  • Kang L, Han XG, Zhang ZB, Sun OJ (2007) Grassland ecosystems in China: review of current knowledge and research advancement. Philos Trans R Soc Lond B Biol Sci 362:997–1008

    Article  PubMed  PubMed Central  Google Scholar 

  • Khishigbayar J, Fernández-Giménez ME, Angerer JP et al (2015) Mongolian rangelands at a tipping point? Biomass and cover are stable but composition shifts and richness declines after 20 years of grazing and increasing temperatures. J Arid Environ 115:100–112

    Article  Google Scholar 

  • Klumpp K, Fontaine S, Attard E et al (2009) Grazing triggers soil carbon loss by altering plant roots and their control on soil microbial community. J Ecol 97:876–885

    Article  CAS  Google Scholar 

  • Knops J, Bradley K, Wedin D (2002) Mechanisms of plant species impacts on ecosystem nitrogen cycling. Ecol Lett 5:454–466

    Article  Google Scholar 

  • Lavrenko EM, Karamysheva ZV (1993) Steppes of the former Soviet Union and Mongolia. In: Coupland RT (ed) Ecosystems of the world 8B, Natural Grasslands. Elsevier, Amsterdam, pp 3–59

    Google Scholar 

  • Le Houerou HN, Bingham RL, Skerbek W (1988) Relationships between the variability of the primary production and the variability of annual precipitation in world arid lands. J Arid Environ 15:1–18

    Google Scholar 

  • Lezama F, Baeza S, Altesor A et al (2014) Variation of grazing-induced vegetation changes across a large-scale productivity gradient. J Veg Sci 25:8–21

    Article  Google Scholar 

  • Li CL, Hao XY, Zhao ML et al (2008) Influence of historic sheep grazing on vegetation and soil properties of a desert steppe in Inner Mongolia. Agric Ecosyst Environ 128:109–116

    Article  Google Scholar 

  • Li XJ, Zhang XZ, Wu JS et al (2011a) Root biomass distribution in alpine ecosystems of the northern Tibetan Plateau. Environ Earth Sci 64:1911–1919

    Article  Google Scholar 

  • Li YQ, Zhao HL, Zhao XY et al (2011b) Effects of grazing and livestock exclusion on soil physical and chemical properties in desertified sandy grassland, Inner Mongolia, northern China. Environ Earth Sci 63:771–783

    Article  CAS  Google Scholar 

  • Li XL, Gao J, Brierley G et al (2013a) Rangeland degradation on the Qinghai-Tibet Plateau: implications for rehabilitation. L Degrad Dev 24:72–80

    Article  CAS  Google Scholar 

  • Li YY, Dong SK, Wen L et al (2013b) Assessing the soil quality of alpine grasslands in the Qinghai-Tibetan Plateau using a modified soil quality index. Environ Monit Assess 185:8011–8022

    Article  CAS  PubMed  Google Scholar 

  • Luan JW, Cui LJ, Xiang CH et al (2014) Different grazing removal exclosures effects on soil C stocks among alpine ecosystems in east Qinghai-Tibet Plateau. Ecol Eng 64:262–268

    Article  Google Scholar 

  • Ma WH, He JS, Yang Y et al (2010) Environmental factors covary with plant diversity–productivity relationships among Chinese grassland sites. Glob Ecol Biogeogr 19:233–243

    Article  Google Scholar 

  • Marklein AR, Houlton BZ (2012) Nitrogen inputs accelerate phosphorus cycling rates across a wide variety of terrestrial ecosystems. New Phytol 193:696–704

    Article  CAS  PubMed  Google Scholar 

  • McNaughton S (1979) Grazing as an optimization process: grass-ungulate relationships in the Serengeti. Am Nat 113:691–703

    Article  Google Scholar 

  • McNaughton S, Banyikwa F, McNaughton M (1998) Root biomass and productivity in a grazing ecosystem: the Serengeti. Ecology 79:587–592

    Article  Google Scholar 

  • McSherry ME, Ritchie ME (2013) Effects of grazing on grassland soil carbon: a global review. Glob Chang Biol 19:1347–1357

    Article  PubMed  Google Scholar 

  • Mikola J, Setälä H, Virkajärvi P et al (2009) Defoliation and patchy nutrient return drive grazing effects on plant and soil properties in a dairy cow pasture. Ecol Monogr 79:221–244

    Article  Google Scholar 

  • Milchunas DG, Lauenroth WK (1993) Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol Monogr 63:327–366

    Article  Google Scholar 

  • Ministry of Agriculture of the People’s Republic of China (2002) Calculation of proper carrying capacity of rangelands. (In Chinese)

  • Oba G, Weladji RB, Lusigi WJ, Stenseth NC (2003) Scale-dependent effects of grazing on rangeland degradation in northern Kenya: a test of equilibrium and non-equilibrium hypotheses. L Degrad Dev 14:83–94

    Article  Google Scholar 

  • Overbeck GE (2014) The effects of grazing depend on productivity, and what else? J Veg Sci 25:6–7

    Article  Google Scholar 

  • Pandey CB, Singh JS (1992) Influence of rainfall and grazing on belowground biomass dynamics in a dry tropical savanna. Can J Bot 70:1885–1890

    Article  Google Scholar 

  • Paz-Ferreiro J, Medina-Roldán E, Ostle NJ et al (2012) Grazing increases the temperature sensitivity of soil organic matter decomposition in a temperate grassland. Environ Res Lett 7:014027

    Article  Google Scholar 

  • Piñeiro G, Paruelo JM, Oesterheld M, Jobbágy EG (2010) Pathways of grazing effects on soil organic carbon and nitrogen. Rangel Ecol Manag 63:109–119

    Article  Google Scholar 

  • Pribyl DW (2010) A critical review of the conventional SOC to SOM conversion factor. Geoderma 156:75–83

    Article  CAS  Google Scholar 

  • Ren JZ (1998) Grassland science research methods. China Agriculture Press, Beijing (in Chinese)

    Google Scholar 

  • Rui YC, Wang YF, Chen CR et al (2012) Warming and grazing increase mineralization of organic P in an alpine meadow ecosystem of Qinghai-Tibet Plateau, China. Plant Soil 357:73–87

    Article  CAS  Google Scholar 

  • Sankaran M, Augustine DJ (2004) Large herbivores suppress decomposer abundance in a semiarid grazing ecosystem. Ecology 85:1052–1061

    Article  Google Scholar 

  • Sasaki T, Okayasu T, Jamsran U, Takeuchi K (2008) Threshold changes in vegetation along a grazing gradient in Mongolian rangelands. J Ecol 96:145–154

    Google Scholar 

  • Schrama M, Veen GF, Bakker ES et al (2013) An integrated perspective to explain nitrogen mineralization in grazed ecosystems. Perspect Plant Ecol Evol Syst 15:32–44

    Article  Google Scholar 

  • Seagle SW, McNaughton SJ, Ruess RW (1992) Simulated effects of grazing on soil nitrogen and mineralization in contrasting Serengeti grasslands. Ecology 73:1105–1123

    Article  Google Scholar 

  • Semmartin M, Aguiar MR, Distel RA et al (2004) Litter quality and nutrient cycling affected by grazing-induced species replacements along a precipitation gradient. Oikos 107:148–160

    Article  Google Scholar 

  • Semmartin M, Di Bella C, de Salamone IG (2010) Grazing-induced changes in plant species composition affect plant and soil properties of grassland mesocosms. Plant Soil 328:471–481

    Article  CAS  Google Scholar 

  • Shang ZH, Long RJ (2007) Formation causes and recovery of the “Black Soil Type” degraded alpine grassland in Qinghai-Tibetan Plateau. Front Agric China 1:197–202

    Article  Google Scholar 

  • Shen JB, Yuan LX, Zhang JL et al (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156:997–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Wang Y, Ma Y et al (2013) Field-based observations of regional-scale, temporal variation in net primary production in Tibetan alpine grasslands. Biogeosciences Discuss 10:16843–16878

    Article  Google Scholar 

  • Stark S, Männistö MK, Eskelinen A (2015) When do grazers accelerate or decelerate soil carbon and nitrogen cycling in tundra? A test of theory on grazing effects in fertile and infertile habitats. Oikos 124:593–602

    Article  CAS  Google Scholar 

  • Steffens M, Kölbl A, Totsche KU et al (2008) Grazing effects on soil chemical and physical properties in a semiarid steppe of Inner Mongolia (P.R. China). Geoderma 143:63–72

    Article  CAS  Google Scholar 

  • Stumpp M, Wesche K, Retzer V, Miehe G (2005) Impact of grazing livestock and distance from water points on soil fertility in southern Mongolia. Mt Res Dev 25:244–251

    Article  Google Scholar 

  • Sun J, Wang XD, Cheng GW et al (2014) Effects of grazing regimes on plant traits and soil nutrients in an alpine steppe, northern Tibetan Plateau. PLoS One 9:1–9. doi:10.1371/journal.pone.0108821

    Article  Google Scholar 

  • Teague WR, Dowhower SL, Baker SA et al (2011) Grazing management impacts on vegetation, soil biota and soil chemical, physical and hydrological properties in tall grass prairie. Agric Ecosyst Environ 141:310–322

    Article  CAS  Google Scholar 

  • R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Trimble SW, Mendel AC (1995) The cow as a geomorphic agent—a critical review. Geomorphology 13:233–253

    Article  Google Scholar 

  • Vetter S (2005) Rangelands at equilibrium and non-equilibrium: recent developments in the debate. J Arid Environ 62:321–341

    Article  Google Scholar 

  • von Lützow M, Kögel-Knabner I (2009) Temperature sensitivity of soil organic matter decomposition-what do we know? Biol Fertil Soils 46:1–15

    Article  Google Scholar 

  • von Wehrden H, Wesche K (2007) Relationships between climate, productivity and vegetation in southern Mongolian drylands. Basic Appl Dryland Res 1:100–120

    Article  Google Scholar 

  • von Wehrden H, Hanspach J, Kaczensky P et al (2012) Global assessment of the non-equilibrium concept in rangelands. Ecol Appl 22:393–399

    Article  Google Scholar 

  • Waide RB, Willig MR, Steiner CF et al (1999) The relationship between productivity and species richness. Annu Rev Ecol Syst 30:257–300

    Article  Google Scholar 

  • Wang GX, Cheng GD, Shen YP et al (2003) Influence of land cover changes on the physical and chemical properties of alpine meadow soil. Chin Sci Bull 48:118–124

    Article  CAS  Google Scholar 

  • Wang XM, Chen FH, Hasi E et al (2008) Desertification in China: an assessment. Earth Sci Rev 88:188–206

    Article  Google Scholar 

  • Wang CH, Han XG, Xing XR (2010) Effects of grazing exclusion on soil net nitrogen mineralization and nitrogen availability in a temperate steppe in northern China. J Arid Environ 74:1287–1293

    Article  Google Scholar 

  • Wardle DA, Bardgett RD (2004) Human-induced changes in large herbivorous mammal density: the consequences for decomposers. Front Ecol Environ 2:145–153

    Article  Google Scholar 

  • Wesche K, Ronnenberg K, Retzer V, Miehe G (2010) Effects of large herbivore exclusion on southern Mongolian desert steppes. Acta Oecol 36:234–241

    Article  Google Scholar 

  • White R, Murray S, Rohweder M (2000) Pilot analysis of global ecosystems: Grassland ecosystems. World

  • Wu GL, Du GZ, Liu ZH et al (2009) Effect of fencing and grazing on a Kobresia-dominated meadow in the Qinghai-Tibetan Plateau. Plant Soil 319:115–126

    Article  CAS  Google Scholar 

  • Xin YJ, Du TY, Yin YC et al (2011) The evaluation of carrying capacity of grassland in Qinghai. Qinghai Prataculture 20:13–22 (in Chinese)

    Google Scholar 

  • Xiong DP, Shi PL, Sun YL et al (2014) Effects of grazing exclusion on plant productivity and soil carbon, nitrogen storage in alpine meadows in northern Tibet, China. Chin Geogr Sci 24:488–498

    Article  Google Scholar 

  • Yan ZL, Wu N (2005) Rangeland privatization and its impacts on the Zoige wetlands on the Eastern Tibetan Plateau. J Mt Sci 2:105–115

    Article  Google Scholar 

  • Yan ZL, Wu N, Yeshi D, Ru J (2005) A review of rangeland privatisation and its implications in the Tibetan Plateau, China. Nomad Peoples 9:31–51

    Article  Google Scholar 

  • Yan L, Zhou G, Zhang F (2013) Effects of different grazing intensities on grassland production in China: a meta-analysis. PLoS One 8:e81466. doi:10.1371/journal.pone.0081466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang X, Zhang K, Jia B, Ci L (2005) Desertification assessment in China: an overview. J Arid Environ 63:517–531

    Article  Google Scholar 

  • Yang YH, Fang JY, Tang YH et al (2008) Storage, patterns and controls of soil organic carbon in the Tibetan grasslands. Glob Chang Biol 14:1592–1599

    Article  Google Scholar 

  • Yang YF, Wu LW, Lin QY et al (2013) Responses of the functional structure of soil microbial community to livestock grazing in the Tibetan alpine grassland. Glob Chang Biol 19:637–648

    Article  PubMed  Google Scholar 

  • Zhang GG, Li XD, Kang YM et al (2012) Spatiotemporal variability of net primary production over the past half century in Inner Mongolia grassland of China. Food, Agric Environ 10:1168–1173

    Google Scholar 

  • Zhou G, Wang Y, Wang S (2002) Responses of grassland ecosystems to precipitation and land use along the Northeast China Transect. J Veg Sci 13:361–368

    Article  Google Scholar 

  • Zhou HK, Zhao XQ, Tang YH et al (2005) Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China. Grassl Sci 51:191–203

    Article  Google Scholar 

  • Zhou W, Gang CC, Zhou L et al (2014) Dynamic of grassland vegetation degradation and its quantitative assessment in the northwest China. Acta Oecol 55:86–96

    Article  Google Scholar 

  • Zou CJ, Wang KY, Wang TH et al (2007) Overgrazing and soil carbon dynamics in eastern Inner Mongolia of China. Ecol Res 22:135–142

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The China Meteorological Forcing Dataset used in this study was developed by the Data Assimilation and Modelling Centre for Tibetan Multi-spheres, the Institute of Tibetan Plateau Research (CAS). Y. J. Wang carefully extracted and processed the climate data, H.Y. Yu gave suggestions for Arcgis processing, H. von Wehrden provided advice on statistics, Dr. McCluskey kindly checked English. Two anonymous referees and J. Kamp provided helpful comments on the manuscript. The study was financed by the German Federal Ministry of Education and Research within the joint research programme “Central Asia– Monsoon dynamics and geo-ecosystems (CAME) project” and supported by the Chinese Academy of Sciences (Grant No. XDA05130702 to Y. P. Y.)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Johannes Kamp.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wesche, K. Vegetation and soil responses to livestock grazing in Central Asian grasslands: a review of Chinese literature. Biodivers Conserv 25, 2401–2420 (2016). https://doi.org/10.1007/s10531-015-1034-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-1034-1

Keywords

Navigation