Skip to main content

Advertisement

Log in

Ecology and biodiversity of picoplanktonic cyanobacteria in coastal and brackish environments

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Planktonic picocyanobacteria (PPC) are known to be a minor component of the pelagic phytocoenoses of coastal and brackish waters but recent studies have shown an increase in the biomass of these microorganisms, particularly in environments subject to anthropogenic pollution. PPC can play an important role in the functioning of the food webs and can modulate their metabolism in response to environmental changes. Most of the information available on PPC concerns open waters but this overview seeks to examine the existing literature on the diversity and ecology of these prokaryotes in coastal and brackish environments. Some recent studies have demonstrated the existence of a large number of picocyanobacterial strains, but their structural diversity (taxonomy) is still largely unknown. Genomics is greatly enhancing our knowledge of picocyanobacterial genetic diversity, but without complementary cytomorphological, ecophysiological and biochemical analyses, correct taxonomic classification cannot be achieved. As coastal environments provide a wide range of goods and services, managers need information on environmental quality and how they can preserve it. Together with other planktonic microbes, PPC are potentially useful as sensitive environmental indicators. More research is needed, not only to forecast and manage their harmful effects on coastal environments, but also to provide new insights into the biotechnological use of selected strains, in the framework of the blue economy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Albertano P, Di Somma D, Leonardi D, Canini A, Grilli Caiola M (1996) Cell structure of planktic cyanobacteria in the Baltic Sea. Algol Stud 83:29–54

    Google Scholar 

  • Albertano P, Di Somma D, Capucci E (1997) Cyanobacterial picoplankton from the Central Baltic Sea: cell size classification by image-analyzed fluorescence microscopy. J Plankton Res 19:1405–1416

    Google Scholar 

  • Andreoli C, Rascio N, Dalla Vecchia E, Talarico L (1989) An ultrastructural research on natural populations of picoplankton from two brackish water environments in Italy. J Plankton Res 11:1067–1074

    Google Scholar 

  • Ansotegui A, Sarobe A, Trigueros JM, Urrutxurtu I, Orive EE (2003) Size distribution of algal pigments and phytoplankton assemblages in a coastal-estuarine environment: contribution of small eukaryotic algae. J Plankton Res 25(4):341–355

    CAS  Google Scholar 

  • Azam F, Worden AZ (2004) Microbes, molecules, and marine ecosystems. Science 1622:303. doi:10.1126/science.1093892

    Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Mayer-Reil LA, Thingstad F (1983) The ecological role of water column microbes in the sea. Mar Ecol Prog Ser 10:257–263

    Google Scholar 

  • Baumard P, Budzinski H, Garrigues P, Sorbe JC, Burgeot T, Bellocq J (1998) Concentrations of PAHs (polycyclic aromatic hydrocarbons) in various marine organisms in relation to those in sediments and to trophic level. Mar Pollut Bull 36(12):951–960

    CAS  Google Scholar 

  • Beaugrand G, Brander KM, Lindley JA, Souissi S, Reid PC (2003) Plankton effect on cod recruitment in the North Sea. Nature 426:661–664

    CAS  PubMed  Google Scholar 

  • Bec B, Husseini-Ratrema J, Collos Y, Souchu P, Vaquer A (2005) Phytoplankton seasonal dynamics in a Mediterranean coastal lagoon: emphasis on the picoeukaryote community. J Plankton Res 27(9):881–894

    CAS  Google Scholar 

  • Biegala IC, Raimbault P (2008) High abundance of diazotrophic picocyanobacteria (<3 µm) in a Southwest Pacific coral lagoon. Aquat Microb Ecol 51:45–53

    Google Scholar 

  • Bihari N, Fafandel M, Hamer B, Kralj-Bilen B (2006) PAH content, toxicity and genotoxicity of coastal marine sediments from the Rovinj area, Northern Adriatic, Croatia. Sci Tot Environ 366:602–611

    CAS  Google Scholar 

  • Blom JF, Baumann HI, Codd GA, Jüttner F (2006) Sensitivity and adaptation of aquatic organisms to oscillapeptin J and [D-Asp3,(E)-Dhb7]microcystin-RR. Arch Hydrobiol 167:547–559

    CAS  Google Scholar 

  • Bode A, Varela M, Morán XAG (2012) RADIALES A Coruña. In: O’Brien TD, Li WKW, Morán XAG (eds) ICES phytoplankton and microbial plankton status Report 2009/2010, pp 129–131

  • Bouvy M, Dupuy C, Pagano M, Barani A, Charpy L (2012) Do human activities affect the picoplankton structure of the Ahe atoll lagoon (Tuamotu Archipelago, French Polynesia)? Mar Pollut Bull 65(10–12):516–524

    CAS  PubMed  Google Scholar 

  • Boyd PW, Strzepek R, Fu F, Hutchins DA (2010) Environmental control of open-ocean phytoplankton groups: now and in the future. Limnol Oceanogr 55(3):1353–1376. doi:10.4319/lo.2010.55.3.1353

    CAS  Google Scholar 

  • Buitenhuis ET, Li WKW, Vaulot D, Lomas MW, Landry MR, Partensky F, Karl DM, Ulloa O, Campbell L, Jacquet S, Lantoine F, Chavez F, Macias D, Gosselin M, McManus GB (2012) Picophytoplankton biomass distribution in the global Ocean. Earth Syst Sci Data 4:37–46. doi:10.5194/essd-4-37-2012

    Google Scholar 

  • Cai Y-M, Ning X-R, Liu C-G, Hao Q (2007) Distribution Pattern of Photosynthetic Picoplankton and Heterotrophic Bacteria in the Northern South China Sea. J Integr Plant Biol 49(3):282–298

    CAS  Google Scholar 

  • Cai H, Wang K, Huang S, Jiao N, Chen F (2010) Distinct patterns of picocyanobacterial communities in winter and summer in the Chesapeake Bay. Appl Environ Microbiol 76(9):2955–2960. doi:10.1128/AEM.02868-09

    PubMed Central  CAS  PubMed  Google Scholar 

  • Calbet A (2008) The trophic roles of microzooplankton in marine ecosystems. ICES J Mar Sci 65:325–331

    Google Scholar 

  • Carmichael WW, Li R (2006) Cyanobacteria toxins in the Salton Sea. Saline Syst 2:5–17

    PubMed Central  PubMed  Google Scholar 

  • Caroppo C (2000) The contribution of picophytoplankton to community structure in a Mediterranean brackish environment. J Plankton Res 22(2):381–397

    Google Scholar 

  • Caroppo C, Stabili L, Aresta M, Corinaldesi C, Danovaro R (2006a) Impact of heavy metals and PCBs on marine picoplankton. Environ Toxicol 21(6):541–551. doi:10.1002/tox.20215

    CAS  PubMed  Google Scholar 

  • Caroppo C, Turicchia S, Margheri MC (2006b) Phytoplankton assemblages in coastal waters of the Northern Ionian Sea (eastern Mediterranean), with special reference to cyanobacteria. J Mar Biol Assoc UK 86:927–937. doi:10.1017/S0025315406013889

    Google Scholar 

  • Caroppo C, Buttino I, Camatti E, Caruso G, De Angelis R, Facca C, Giovanardi F, Lazzara L, Mangoni O, Magaletti E (2013) State of the art and perspectives on the use of planktonic communities as indicators of environmental status in relation to the EU Marine Strategy Framework Directive. Biol Mar Mediter 20(1):65–73

    Google Scholar 

  • Caroppo C, Francavilla M, Pagliara P (2014a) Mediterranean Cyanobacterial biodiversity and bioactivity. In: Goyal P, Chauhan A, Kaushik P (eds) Plant & Microbes…an innovative approach, SBW Publishers, New Delhi, pp 18–32, ISBN: 9788185708300

  • Caroppo C, Musco L, Stabili L (2014b) Planktonic assemblages in a coastal mediterranean area subjected to anthropogenic pressure. J Geogr Nat Disasters 4:121. doi:10.4172/2167-0587.1000121

    Google Scholar 

  • Caruso G, Leonardi M, Monticelli LS, Decembrini F, Azzaro F, Crisafi E, Zappalá G, Bergamasco A, Vizzini S (2010) Assessment of the ecological status of transitional waters in Sicily (Italy): first characterisation and classification according to a multiparametric approach. Mar Pollut Bull 60:1682–1690

    CAS  PubMed  Google Scholar 

  • Castenholz RW (2001) Oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW (eds) Bergey’s manual of systematic bacteriology, Vol. 1, 2nd ed. Springer, New York, pp 473–600

  • Charpy L, Blanchot J (1998) Photosynthetic picoplankton in French Polynesian atoll lagoons: estimation of taxa contribution to biomass and production by flow cytometry. Mar Ecol Prog Ser 162:57–70

    Google Scholar 

  • Charpy L, Blanchot J (1999) Picophytoplankton biomass, community structure and productivity in the Great Astrolabe Lagoon, Fiji. Coral Reefs 18:255–262

    Google Scholar 

  • Chiou CT, McGroddy SE, Kile DE (1998) Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments. Environ Sci Technol 32:264–269

    CAS  Google Scholar 

  • Chisholm SW, Olson RJ, Zettler ER, Goericke R, Waterbury JB, Welschmeyer NA (1988) A novel free-living prochlorophyte abundant in the oceanic euphotic zone. Nature 334:340–343

    Google Scholar 

  • Chisholm SW, Frankel SL, Goericke R, Olson RJ, Palenik B, Waterbury JB, West-Johnsrud L, Zettler ER (1992) Prochlorococcus marinus nov. gen. nov. sp.: an oxyphototrophic marine prokaryote containing divinyl chlorophyll a and b. Arch Microbiol 157:297–300

    CAS  Google Scholar 

  • Choi DH, Noh JH, Shim JS (2013) Seasonal changes in picocyanobacterial diversity as revealed by pyrosequencing in temperate waters of the East China Sea and the East Sea. Aquat Microb Ecol 71:75–90. doi:10.3354/ame01669

    Google Scholar 

  • Collos Y, Bec B, Jauzein C, Abadie E, Laugier T, Pastoureaud A, Souchu P, Vaquer A, Lautier J (2009) Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau lagoon, southern France. J Sea Res 61:68–75

    Google Scholar 

  • Costanza R, Mageau M (1999) What is a health ecosystem? In: Kumpf H, Steidinger K, Sherman K (eds) The Gulf of Mexico large marine ecosystem: assessment, sustainability and management. Blackwell Science, New York, pp 385–415

    Google Scholar 

  • Di Poi E, Blason C, Corinaldesi C, Danovaro R, Malisana E, Fonda Umani S (2013) Structure and interactions within the pelagic microbial food web (from viruses to microplankton) across environmental gradients in the Mediterranean Sea. Glob Biogeochem Cycles 27:1–12. doi:10.1002/2013GB004589

    Google Scholar 

  • Dufresne A, Ostrowski M, Scanlan DJ, Garczarek L, Mazard S, Palenik BP, Paulsen IT, tandeau de Marsac N, Wincker P, Dossat C, Ferriera S, Johnson J, Post AF, Hess WR, Partensky F (2008) Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol 9:R90

    PubMed Central  PubMed  Google Scholar 

  • Echevarría F, Zabala L, Corzo A, Navarro G, Prieto L, Macías D (2009) Spatial distribution of autotrophic picoplankton in relation to physical forcings: the Gulf of Cádiz, Strait of Gibraltar and Alborán Sea case study. J Plankton Res 31(11):1339–1351

    Google Scholar 

  • Flombaum P, Gallegos JL, Gordillo RA, Rincón J, Zabala LL, Karl DM, Li WKW, Lomas MW, Veneziano D, Jiao N, Veraand CS, Martiny AC, Vrugt JA (2013) Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus. PNAS 110(24):9824–9829. doi:10.1073/pnas.1307701110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fu F-X, Warner ME, Zhang Y, Feng Y, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth, and elemental ratios in marine Synechococcus and Prochlorococcus (Cyanobacteria). J Phycol 43:485–496. doi:10.1111/j.1529-8817.2007.00355.x

    Google Scholar 

  • García-Pichel F (1994) A model for internal self-shading in planktonic organisms and its implications for the usefulness of ultraviolet sunscreens. Limnol Oceanogr 39:1704–1717

    Google Scholar 

  • Gasol JM, Massana R, Simó R, Marrasé C, Acinas SG, Pedrós-Alió C, Pelejero C, Sala MM, Calvo E, Vaqué D, Peters F (2012) Blanes Bay. In: O’Brien TD, Li WKW, Morán XAG (eds) ICES phytoplankton and microbial plankton Status Report 2009/2010, pp 137–140

  • Gin NKYH, Zhang S, Lee YK (2003) Phytoplankton community structure in Singapore’s coastal waters using HPLC pigment analysis and flow cytometry. J Plankton Res 25(12):1507–1519

    CAS  Google Scholar 

  • Giovannoni SJ, Britschgi TB, Moyer CL, Field KG (1990) Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63

    CAS  PubMed  Google Scholar 

  • Goleski JA, Koch F, Marcoval MA, Wall CC, Jochem FJ, Peterson BJ, Gobler CJ (2010) The role of zooplankton grazing and nutrient loading in the occurrence of harmful marine cyanobacterial blooms in Florida Bay, USA. Estuar Coast 33:1202–1215

    CAS  Google Scholar 

  • Golubic S, Le Campion-Alsumard T, Campbell SE (1999) Diversity of marine cyanobacteria. In: Charpy L, Larkum AWD (eds) Marine cyanobacteria. Institute of Oceanography, Monaco, pp 53–76

    Google Scholar 

  • González-Quirós R, Cabal J, Álvarez-Marqués F, Isla A (2003) Ichthyoplankton distribution and plankton production related to the shelf break front at the Avilés Canyon. ICES J Mar Sci 60:198–210

    Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685. doi:10.1128/MMBR.68.4.669-685.2004

    PubMed Central  CAS  PubMed  Google Scholar 

  • Havens KE (2008) Cyanobacteria blooms: effects on aquatic ecosystems. Adv Exp Med Biol 619:733–747. doi:10.1007/978-0-387-75865-7_33

    PubMed  Google Scholar 

  • Haverkamp THA, Schouten D, Doeleman M, Wollenzien U, Huisman J, Stal LJ (2009) Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea. ISME J 3:397–408

    CAS  PubMed  Google Scholar 

  • Heip C, McDonough N (2012) Marine biodiversity: a science roadmap for Europe. Marine Board Future Science Brief 1, European Marine Board, Ostend, Belgium. ISBN: 978-2-918428-75-6

  • Honda D, Yokota A, Sugiyama J (1999) Detection of seven major evolutionary lineages in Cyanobacteria based on the 16S rRNA gene sequence analysis with new sequences of five marine Synechococcus strains. J Mol Evol 48:723–739

    CAS  PubMed  Google Scholar 

  • Huang S, Wilhelm SW, Harvey HR, Taylor K, Jiao N, Chen F (2012) Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J 6:285–297

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jacquet S, Delesalle B, Torréton JP, Blanchot J (2006) Response of phytoplankton communities to increased anthropogenic influences (south-western lagoon, New Caledonia). Mar Ecol Prog Ser 320:65–78

    CAS  Google Scholar 

  • Jeong HJ, Yoo YD, Kim JS, Seong KA, Kang NS, Kim TH (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45(2):65–91. doi:10.1007/s12601-010-0007-2

    CAS  Google Scholar 

  • Johnson PW, Sieburth JM (1979) Chroococcoid cyanobacteria in the sea: a ubiquitous and diverse phototrophic biomass. Limnol Oceanogr 24:928–935

    Google Scholar 

  • Johnson PW, Sieburth JM (1982) In situ morphology and occurrence of eukariotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters. J Phycol 8:318–327

    Google Scholar 

  • Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EM, Chisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737–1740

    CAS  PubMed  Google Scholar 

  • Karuza A, Fonda Umani S, Del Negro P (2012) The (un)coupling between viruses and prokaryotes in the Gulf of Trieste. Estuar Coast Shelf Sci 115:87–97

    Google Scholar 

  • Komárek J (2003) Problem of the taxonomic category “species” in Cyanobacteria. Algol Stud 109:281–297

    Google Scholar 

  • Komárek J (2005) The modern classification of Cyanoprokaryotes (Cyanobacteria). Oceanol Hydrobiol Stud 34:5–17

    Google Scholar 

  • Komárek J (2006) Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algae 21(4):349–375

    Google Scholar 

  • Komárek J (2010) Recent changes (2008) in cyanobacteria taxonomy based on a combination of molecular background with phenotype and ecological consequences (genus and species concept). Hydrobiologia 639:245–259

    Google Scholar 

  • Komárek J, Anagnostidis K (2008) Cyanoprokaryota. Part 1. Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süβwasserflora von Mitteleuropa. Spektrum Akademischer Verlag, Heidelberg, p 548

    Google Scholar 

  • Komárek J, Kopecký J, Cepák V (1999) The background for taxonomy of the simplest cyanoprokaryotic genera Cyanobium, Cyanobacterium and Synechococcus. Criptogam Algol 20(3):209–222

    Google Scholar 

  • Kuo J, Tew KS, Ye YX, Cheng JO, Meng PJ, Glover DC (2014) Picoplankton dynamics and picoeukaryote diversity in a hyper-eutrophic subtropical lagoon. J Environ Sci Health (Part A) 49(1):116–124. doi:10.1080/10934529.2013.824784

    CAS  Google Scholar 

  • Lafabrie C, Garrido M, Leboulanger C, Cecchi P, Grégori G, Pasqualini V, Pringault O (2013) Impact of contaminated-sediment resuspension on phytoplankton in the Biguglia lagoon (Corsica, Mediterranean Sea). Estuar Coast Shelf Sci 130:70–80

    CAS  Google Scholar 

  • Le Moal M, Biegala IC (2009) Diazotrophic unicellular cyanobacteria in the northwestern Mediterranean Sea: a seasonal cycle. Limnol Oceanogr 54(3):845–855

    Google Scholar 

  • Leão PN, Engene N, Antunes A, Gerwick WH, Vasconcelos V (2012) The chemical ecology of cyanobacteria. Nat Prod Rep 29:372–391

    PubMed Central  PubMed  Google Scholar 

  • Li WKW (2009) From cytometry to macroecology: a quarter century quest in microbial oceanography. Aquat Microb Ecol 57:239–251

    Google Scholar 

  • Liu H, Jing H, Wong THC, Chen B (2014) Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong. Environ Microbiol Rep 6(1):90–99. doi:10.1111/1758-2229.12111

    PubMed  Google Scholar 

  • Magazzù G, Decembrini F (1995) Primary production, biomass and abundance of phototrophic picoplankton in the Mediterranean Sea: a review. Aquat Microb Ecol 9:97–104

    Google Scholar 

  • Mangoni O, Imperatore C, Tomas CR, Costantino V, Saggiomo V, Mangoni A (2011) The new carotenoid pigment moraxanthin associated with a toxic microalgae. Mar Drugs 9:242–255

    PubMed Central  CAS  PubMed  Google Scholar 

  • Marie D, Rigaut-Jalabert F, Vaulot D (2014) An improved protocol for flow cytometry analysis of phytoplankton cultures and natural samples. Cytometry A 85:962–968

    PubMed  Google Scholar 

  • Martinez ML, Intralawan A, Vazquez G, Perez-Maqueo O, Sutton P, Landgrave R (2007) The coasts of our world: ecological, economic and social importance. Ecol Econ 63:254–272

    Google Scholar 

  • Mazur-Marzec H, Sutryk K, Kobos J, Hebel A, Hohlfeld N, Blaszczyk A, Torunska A, Kaczkowska MJ, Lysiak-Pastuszak E, Kraśniewski W, Jasser I (2013) Occurrence of cyanobacteria and cyanotoxin in the Southern Baltic proper. Filamentous cyanobacteria versus single-celled picocyanobacteria. Hydrobiologia 701:235–252. doi:10.1007/s10750-012-1278-7

    CAS  Google Scholar 

  • McNeill J, Barrie FR. Buck WR, Demoulin V, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, Prud’homme van Reine WF, Smith GE, Wiersema JH, Turland NJ (eds) (2012). International Code of Nomenclature for algae, fungi, and plants (Melbourne Code) adopted by the Eighteenth International Botanical Congress Melbourne, Australia, July 2011 [Regnum Vegetabile No. 154.]. Koeltz Scientific Books, Königsten, pp 208

  • McQuatters-Gollop A, Edwards M, Reid PC, Johns D (2010) Healthy & Biologically Diverse Seas Evidence Group Technical Report Series: evaluation and gap analysis of current and potential indicators for Plankton. In: United Kingdom Marine Monitoring & Assessment Strategy (UKMMAS), JNCC, Peterborough, pp 41. ISBN 978-1-86107-615-1

  • Moore LR, Goericke R, Chisholm SW (1995) Comparative physiology of Synechococcus and Prochlorococcus: influence of light and temperature on growth, pigments, fluorescence and absorptive properties. Mar Ecol Prog Ser 116:259–275

    Google Scholar 

  • Nair A, Sathyendranath S, Platt T, Morales J, Stuart V, Forget MH, Devred E, Bouman H (2008) Remote sensing of phytoplankton functional types. Remote Sens Environ 112:3366–3375

    Google Scholar 

  • Ning X, Cloern JE, Cole BE (2000) Spatial and temporal variability of picocyanobacteria Synechococcus sp. in San Francisco Bay. Limnol Oceanogr 45(3):695–702

    CAS  Google Scholar 

  • O’Brien TD, Li WKW, Morán XAG (2012) ICES phytoplankton and microbial plankton Status Report 2009/2010, pp 197

  • O’Neil JM, Davis TW, Burford MA, Gobler CJ (2012) The rise of harmful cyanobacterial blooms: the potential role of eutrophication and global change. Harmful Algae 14:313–334

    Google Scholar 

  • Paerl HW, Rossignol K, Hall SN, Peierls BL, Wetz MS (2010) Phytoplankton community indicators of short- and long-term ecological change in the anthropogenically and climatically impacted Neuse River Estuary, North Carolina, USA. Estuar Coasts 33(2):485–497. doi:10.1007/s12237-009-9137-0

    CAS  Google Scholar 

  • Pagliara P, Caroppo C (2011) Cytotoxic and antimitotic activities in aqueous extracts of eight cyanobacterial strains isolated from the marine sponge Petrosia ficiformis. Toxicon 57:889–896. doi:10.1016/j.toxicon.2011.03.006

    CAS  PubMed  Google Scholar 

  • Pagliara P, Caroppo C (2013) Toxicity of two cyanobacterial strains on Mytilus galloprovincialis hemocytes. Rapp Comm int Mer Médit 40:389

    Google Scholar 

  • Palenik B (2001) Chromatic adaptation in marine Synechococcus strains. Appl Environ Microbiol 67:991–994

    PubMed Central  CAS  PubMed  Google Scholar 

  • Paoli A, Celussi M, Valeri A, Larato C, Bussani A, Fonda Umani S, Vadrucci MR, Mazziotti C, Del Negro P (2007) Picocyanobacteria in Adriatic transitional environments. Estuar Coast Shelf Sci 75:13–20

    Google Scholar 

  • Partensky F, Blanchot J, Vaulot D (1999) Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. In: Charpy L, Larkum AWD (eds) Marine Cyanobacteria. Institute of Oceanography, Monaco, pp 457–475

    Google Scholar 

  • Phlips EJ, Badylak S, Lynch TC (1999) Cyanobacterial blooms in Florida Bay. Limnol Ocean 44:1166–1175

    Google Scholar 

  • Pittera J, Humily F, Thorel M, Grulois D, Garczarek L, Six C (2014) Connecting thermal physiology and latitudinal niche partitioning in marine Synechococcus. ISME J 8:1221–1236. doi:10.1038/ismej.2013.228

    CAS  PubMed  Google Scholar 

  • Rekik A, Denis M, Aleya L, Maalej S, Ayadi H (2013) Spring plankton community structure and distribution in the north and south coasts of Sfax (Tunisia) after north coast restoration. Mar Pollut Bull 67:82–93

    CAS  PubMed  Google Scholar 

  • Robertson BR, Tezuka N, Watanabe MM (2001) Phylogenetic analyses of Synechococcus strains (cyanobacteria) using sequences of 16S rDNA and part of the phycocyanin operon reveal multiple evolutionary lines and reflect phycobilin content. Int J Syst Evol Microbiol 51:861–887

    CAS  PubMed  Google Scholar 

  • Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW (2003) Genome divergence in two Prochlorococcus eco-types reflects oceanic niche differentiation. Nature 424:1042–1104

    CAS  PubMed  Google Scholar 

  • Roose P, Albaigés J, Bebianno MJ, Camphuysen C, Cronin M, de Leeuw J, Gabrielsen G, Hutchinson T, Hylland K, Jansson B, Jenssen BM, Schulz-Bull D, Szefer P, Webster L, Bakke T, Janssen C (2011) Chemical pollution in Europe’s Seas: programmes, practices and priorities for research, Marine Board Position Paper 16. Calewaert JB, McDonough N (eds), Marine Board-ESF, Ostend, Belgium, pp 108

  • Ruiz-Gonzáles C, Lefort T, Gali M, Sala MM, Sommaruga R, Simó R, Gasol JM (2012) Seasonal patterns in the sunlight sensitivity of bacterioplankton from Mediterranean surface coastal waters. FEMS Microbiol Ecol 79:661–674

    Google Scholar 

  • Ruiz-Gonzáles C, Simó R, Sommaruga R, Gasol JM (2013) Away from darkness: a review on the effects of solar radiation on heterotrophic bacterioplankton activity. Front Microbiol 4(131):1–24. doi:10.3389/fmicb.2013.00131

    Google Scholar 

  • Rykaczewski RR, Checkley DM (2008) Influence of ocean winds on the pelagic ecosystem in upwelling regions. PNAS 105:1065–1970

    Google Scholar 

  • Scanlan DJ, Ostrowski M, Mazard S, Dufresne A, Garczarek L, Hess WR, Post AF, Hagemann M, Paulsen I, Partensky F (2009) Picocyanobacteria ecological genomics of marine. Microbiol Mol Biol Rev 73(2):249–299. doi:10.1128/MMBR.00035-08

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schapira M, Buscot M-J, Pollet T, Leterme S C, Seuront L (2010) Distribution of picophytoplankton communities from brackish to hypersaline waters in a South Australian coastal lagoon. Saline Systems 6: 2. http://www.salinesystems.org/content/6/1/2

  • Sikkema J, De Bont JA, Poolman B (1995) Mechanisms of membrane toxicity of hydrocarbons. Microbiol Rev 59(2):201–222

    PubMed Central  CAS  PubMed  Google Scholar 

  • Siokou-Frangou I, Christaki U, Mazzocchi MG, Montresor M, Ribera d’Alcalá M, Vaqué D, Zingone A (2010) Plankton in the open Mediterranean Sea: a review. Biogeosciences 7: 1543–1586. www.biogeosciences.net/7/1543/2010/

  • Six C, Finkel ZV, Irwin AJ, Campbell DA (2007) Light variability illuminates niche-partitioning among marine picocyanobacteria. PLoS ONE 2(12):e1341. doi:10.1371/journal.pone.0001341

    PubMed Central  PubMed  Google Scholar 

  • Sommaruga R, Robarts RD (1997) The significance of autotrophic and heterotrophic picoplankton in hypertrophic ecosystems. FEMS Microbiol Ecol 24:187–200

    CAS  Google Scholar 

  • Sommaruga R, Hofer JS, Alonso-Sáez L, Gasol JM (2005) Differential sunlight sensitivity of picophytoplankton from surface mediterranean coastal waters. Appl Environ Microbiol 71(4):2154–2157

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sorokin YI, Sorokin PY, Gnes A (1996) Structure and functioning of the anthropogenically transformed Comacchio lagoonal ecosystem (Ferrara, Italy). Mar Ecol Prog Ser 133:57–71

    Google Scholar 

  • Sorokin PY, Sorokin YI, Boscolo R, Giovanardi O (2004) Bloom of picocyanobacteria in the Venice lagoon during summer–autumn 2001: ecological sequences. Hydrobiologia 523:71–85

    Google Scholar 

  • Sorokin YI, Sorokin PY, Ravagnan G (2006) Hypereutrophication events in the Ca’Pisani lagoons associated with intensive aquaculture. Hydrobiologia 571:1–15

    CAS  Google Scholar 

  • Stal LJ, Albertano P, Bergman B, von Bröckel K, Gallon JR, Hayes PK, Sivonen K, Walsby AE (2003) BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanobacteria in the Baltic Sea—responses to a changing environment. Cont Shelf Res 23:1695–1714

    Google Scholar 

  • Stomp M, Huisman J, de Jongh F, Veraart AJ, Gerla D, Rijkeboer M, Ibelings BW, Wollenzien UIA, Stal LJ (2004) Adaptive divergence in pigment composition promotes phytoplankton biodiversity. Nature 432:104–107

    CAS  PubMed  Google Scholar 

  • Uzair B, Tabassum S, Rasheed M, Rehman SF (2012) Exploring marine cyanobacteria for lead compounds of pharmaceutical importance. The ScientificWorld Journal: 1–10. Article ID 179782

  • Vaquer A, Troussellier M, Courties C, Bibent B (1996) Standing stock and dynamics of picophytoplankton in the Thau Lagoon (northwest Mediterranean coast). Limnol Oceanogr 41(8):1821–1828

    Google Scholar 

  • Wang M, Liang Y, Bai X, Jiang X, Wang F, Qiao Q (2010) Distribution of microbial populations and their relationship with environmental parameters in the coastal waters of Qingdao, China. Environ Microbiol 12(7):1926–1939

    CAS  PubMed  Google Scholar 

  • Waterbury JB, Watson SW, Guillard RRL, Brand LE (1979) Widespread occurrence of a unicellular, marine, planktonic, cyanobacterium. Nature 277:293–294

    Google Scholar 

  • Cochrane SKJ., Connor DW, Nilsson P, Mitchell I, Reker J, Franco J, Valavanis V, Moncheva S, Ekebom J, Nygaard K, Serrao-Santos R, Naberhaus I, Packeiser T, Van De Bund W, Cardoso AC (2010) Marine Strategy Framework Guidance on the interpretation and application of Descriptor 1: Biological diversity. Report by Task Group 1 on Biological diversity for the European Commission’s Joint Research. ISPRA, Italy, pp. 114

  • Zampoukas N, Piha H, Bigagli E, Hoepffner N, Hanke G, Cardoso AC (2012) Monitoring for the marine strategy framework directive: requirements and options. Joint Research Centre, ISPRA

    Google Scholar 

  • Zehr JP, Bench SR, Carter BJ, Hewson I, Niazi F, Shi T, Tripp HJ, Affourtit JP (2008) Globally distributed uncultivated oceanic N2-fixing cyanobacteria lack oxygenic photosystem II. Science 322:1110–1112

    CAS  PubMed  Google Scholar 

  • Zubkov MV (2009) Photoheterotrophy in marine prokaryotes. J Plank Res 31(9):933–938

    CAS  Google Scholar 

  • Zubkov MV, Fuchs BM, Tarran GA, Burkill PH, Amann R (2003) High rate of uptake of organic nitrogen compounds by Prochlorococcus Cyanobacteria as a key to their dominance in oligotrophic oceanic waters. Appl Environ Microbiol 69(2):1299–1304

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zwirglmaier K, Jardillier L, Ostrowski M, Mazard S, Garczarek L, Vaulot D, Not F, Massana R, Ulloa O, Scanlan DJ (2008) Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ Microbiol 10:147–161

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was performed as part of the Agreement signed between the Institute for Environmental Protection and Research (ISPRA, Rome, Italy), the Italian National Research Council––Department of Earth Sciences and Technologies for the Environment (CNR-DTA, Rome, Italy) (contract Prot. AMMCNR-CNR n. 0055493, September 13, 2012) and RITMARE, a Flagship Project funded by the Italian Ministry of Universities and Research. I am indebted to Prof. Thomas Sawyer Hopkins for his inspiration and help in setting up the ecological conceptual model. I thank George Metcalf for revising the English text. I also thank the two anonymous referees for their constructive comments, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmela Caroppo.

Additional information

Communicated by Anurag chaurasia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caroppo, C. Ecology and biodiversity of picoplanktonic cyanobacteria in coastal and brackish environments. Biodivers Conserv 24, 949–971 (2015). https://doi.org/10.1007/s10531-015-0891-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-015-0891-y

Keywords

Navigation