Skip to main content

Advertisement

Log in

Topographically controlled soil moisture drives plant diversity patterns within grasslands

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Grasslands are recognized as biodiversity hotspots in Europe. However, protection and management of these habitats are currently constrained by a limited understanding of what determines local grassland plant diversity patterns. Here, we combined vegetation records (8,639 inventory plots) from 258 semi-natural grasslands with fine-resolution topographic data based on light detection and ranging technology to investigate the importance of topography—particularly topographically controlled soil moisture—for local and regional grassland plant diversity patterns across a 43,000 km2 lowland region (Denmark). Specifically, we examined the relationships between five vegetation measures representing species composition and richness as well as functional composition (Ellenberg indicator values) and four functional topographic factors representing topographic wetness, potential solar radiation, heat balance and wind exposure. Topography emerged as an important determinant of diversity patterns in both wet and dry grasslands throughout the study region, with topographic wetness being the strongest correlate of the main local (within-site) and regional (among-sites) gradients in species composition and species’ average preferences for soil moisture. Accordingly, topography plays an important role in shaping grassland plant diversity patterns both locally and regionally throughout this lowland European region, with this role mainly driven by topographically controlled soil moisture. These findings suggest hydrology to be important to consider in the planning and management of European grasslands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amezaga I, Mendarte S, Albizu I et al (2004) Grazing intensity, aspect, and slope effects on limestone grassland structure. Rangel Ecol Manag 57(6):606–612

    Article  Google Scholar 

  • Barbour MG et al (1974) Coastal ecology: Bodega Head. University of California Press, California

  • Bennie J, Hill MO, Baxter R et al (2006) Influence of slope and aspect on long-term vegetation change in British chalk grasslands. J Ecol 94(2):355–368

    Article  Google Scholar 

  • Bennie J, Huntley B, Wiltshire A et al (2008) Slope, aspect and climate: spatially explicit and implicit models of topographic microclimate in chalk grassland. Ecol Model 216(1):47–59

    Article  Google Scholar 

  • Beven KJ, Kirkby MJ (1979) A physically based, variable contributing area model of basin hydrology. Hydrol Sci Bull 24(1):43–69

    Article  Google Scholar 

  • Bivand R, Altman M, Anselin L et al (2012) Spdep: spatial dependence: weighting schemes, statistics and models. http://CRAN.R-project.org/package=spdep. Accessed 19 June 2012

  • Boose ER, Foster DR, Fluet M (1994) Hurricane impacts to tropical and temperate forest landscapes. Ecol Monogr 64(4):369–400

    Article  Google Scholar 

  • Bruun HH, Ejrnæs R (1998) Overdrev–en beskyttet naturtype. Ministry of energy & environment, the forest & nature agency, Copenhagen

  • Burke IC, Lauenroth WK, Vinton MA et al (1998) Plant-soil interactions in temperate grasslands. Biogeochem 42(1):121–143

    Article  Google Scholar 

  • Cantlon JE (1953) Vegetation and microclimates on north and south slopes of Cushetunk Mountain. New Jersey. Ecol Monogr 23(3):241–270

    Article  Google Scholar 

  • Cappelen J, Jørgensen B (1999) Observed wind speed and direction in Denmark–with climatological standard normals, 1961–90. Danish Meteorological Institute, Copenhagen

    Google Scholar 

  • Collins SL, Knapp AK, Briggs JM et al (1998) Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280(5364):745–747

    Article  PubMed  CAS  Google Scholar 

  • Commission of the European communities (2002) Commission working document on NATURA 2000. The commission of the European communities, EU

    Google Scholar 

  • Council of the European Communities (1992) Council directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora

  • Eckhardt K, Ulbrich U (2003) Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J Hydrol 284(1–4):244–252

    Article  CAS  Google Scholar 

  • Eiserhardt WL, Svenning J, Kissling WD et al (2011) Geographical ecology of the palms (Arecaceae): determinants of diversity and distributions across spatial scales. Ann Bot 108(8):1391–1416

    Article  PubMed  Google Scholar 

  • Ejrnæs R, Bruun HH (2000) Gradient analysis of dry grassland vegetation in Denmark. J Veg Sci 11(4):573–584

    Article  Google Scholar 

  • Ellenberg H, Weber HE, Düll R et al (2001) Zeigerwerte von planzen in Mitteleuropa. Erich Goltze GmbH & Co KG, Göttingen

    Google Scholar 

  • Ellermann T, Fenger J, Hertel O et al (2007) Luftbåren kvælstofforurening. Hovedland, Aarhus

    Google Scholar 

  • Ennos AR (1997) Wind as an ecological factor. Trends Ecol Evol 12(3):108–111

    Article  PubMed  CAS  Google Scholar 

  • Flanagan LB, Johnson BG (2005) Interacting effects of temperature, soil moisture and plant biomass production on ecosystem respiration in a northern temperate grassland. Agric For Meteorol 130(3–4):237–253

    Article  Google Scholar 

  • Freckleton RP (2002) On the misuse of residuals in ecology: regression of residuals vs. multiple regression. J Anim Ecol 71(3):542–545

    Article  Google Scholar 

  • Fritzbøger B, Odgaard B (2010) Skovenes historie. In: Møller PF (ed) Naturen i Danmark–Skovene, 1st edn. Gyldendal, Copenhagen

    Google Scholar 

  • Gates DM (1980) Biophysical ecology. Springer, The Netherlands

  • Gibson DJ (2009) Grasses and grassland ecology. Oxford University Press, New York

    Google Scholar 

  • Giesler R, Högberg M, Högberg P (1998) Soil chemistry and plants in Fennoscandian boreal forest as exemplified by a local gradient. Ecology 79(1):119–137

    Article  Google Scholar 

  • Grytnes JA (2003) Species-richness patterns of vascular plants along seven altitudinal transects in Norway. Ecography 26(3):291–300

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135(2–3):147–186

    Article  Google Scholar 

  • Hansson M, Fogelfors H (2000) Management of a semi-natural grassland; results from a 15-year-old experiment in southern Sweden. J Veg Sci 11(1):31–38

    Article  Google Scholar 

  • Hill MO, Mountford JO, Roy DB et al (1999) Ellenberg’s indicator values for British plants. ECOFACT research report series vol 2 technical annex. Institute of Terrestrial Ecology, Huntingdon

  • Janssens F, Peeters A, Tallowin JRB et al (1998) Relationship between soil chemical factors and grassland diversity. Plant Soil 202(1):69–78

    Article  CAS  Google Scholar 

  • Kissling WD, Carl G (2008) Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecol Biogeogr 17(1):59–71

    Google Scholar 

  • Knapp AK (1985) Early season production and microclimate associated with topography in a C4 dominated grassland. Acta Oecol 6(20):337–345

    Google Scholar 

  • Kopecký M, Čížková Š (2010) Using topographic wetness index in vegetation ecology: does the algorithm matter? Appl Veg Sci 13(4):450–459

    Article  Google Scholar 

  • Landolt E, Bäumler B, Erhardt A et al (2010) Flora indicativa–ökologische zeigerwerte und biologische kennzeichen zur flora der Schweiz und der Alpen. Haupt, Bern

    Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology. Elsevier, New York

    Google Scholar 

  • Li F, Zhao L, Zhang H et al (2009) Habitat degradation, topography and rainfall variability interact to determine seed distribution and recruitment in a sand dune grassland. J Veg Sci 20(5):847–859

    Article  Google Scholar 

  • Loiseau P, Louault F, Le Roux X et al (2005) Does extensification of rich grasslands alter the C and N cycles, directly or via species composition? Basic Appl Ecol 6(3):275–287

    Article  CAS  Google Scholar 

  • Maskell LC, Smart SM, Bullock JM et al (2010) Nitrogen deposition causes widespread loss of species richness in British habitats. Global Change Biol 16(2):671–679

    Article  Google Scholar 

  • McCune B, Keon D (2002) Equations for potential annual direct incident radiation and heat load. J Veg Sci 13(4):603–606

    Article  Google Scholar 

  • Mikita T, Klimánek M (2010) Topographic exposure and its practical applications. J Landscape Ecol 3(1):42–51

    Google Scholar 

  • Moeslund JE, Arge L, Bøcher P et al (2011) Geographically comprehensive assessment of salt-meadow vegetation-elevation relations using LiDAR. Wetlands 31:471–482

    Article  Google Scholar 

  • Mossberg B, Stenberg L (2005) Den nye nordiske Flora. Gyldendal, Copenhagen

    Google Scholar 

  • Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787

    Article  CAS  Google Scholar 

  • National Survey and Cadastre (2008) Proceedings of the 2nd NKG workshop on national DEMs, Copenhagen, 11–13 Nov 2008

  • Økland RH, Rydgren K, Økland T (2008) Species richness in boreal swamp forests of SE Norway: the role of surface microtopography. J Veg Sci 19(1):67–74

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R et al. (2011) Vegan: community ecology package. http://CRAN.R-project.org/package=vegan. Accessed 19 June 2012

  • Olivero AM, Hix DM (1998) Influence of aspect and stand age on ground flora of southeastern Ohio forest ecosystems. Plant Ecol 139(2):177–187

    Article  Google Scholar 

  • Parker J (1952) Environment and forest distribution of the Palouse Range in Northern Idaho. Ecology 33:451–461

    Google Scholar 

  • Pearson RG, Dawson TP (2003) Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecol Biog 12(5):361–371

    Article  Google Scholar 

  • Perring F (1959) Topographical gradients of chalk grassland. J Ecol 47(2):447–481

    Article  Google Scholar 

  • Quinn P, Beven K, Chevallier P et al (1991) The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrol Process 5(1):59–79

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reitalu T, Johansson LJ, Sykes MT et al (2010) History matters: village distances, grazing and grassland species diversity. J Appl Ecol 47(6):1216–1224

    Article  Google Scholar 

  • Rodriguez-Iturbe I, D’Odorico P, Porporato A et al (1999) On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour Res 35(12):3709–3722

    Article  Google Scholar 

  • Saunders DA, Hobbs RJ, Margules CR (1991) Biological consequences of ecosystem fragmentation: a review. Conserv Biol 5(1):18–32

    Article  Google Scholar 

  • Silvertown J, Dodd ME, Gowing DJG et al (1999) Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400(6739):61–63

    Article  CAS  Google Scholar 

  • Stevens CJ, Dise NB, Mountford JO et al (2004) Impact of nitrogen deposition on the species richness of grasslands. Science 303(5665):1876–1879

    Article  PubMed  CAS  Google Scholar 

  • Suggitt AJ, Gillingham PK, Hill JK et al (2011) Habitat microclimates drive fine-scale variation in extreme temperatures. Oikos 120(1):1–8

    Article  Google Scholar 

  • Svendsen LM, van der Bijl L, Boutrup S et al. (2005) NOVANA. National monitoring and assessment programme for the aquatic and terrestrial environments: programme description–part 2. National Environmental Research Institute, Denmark

  • Svenning J (1999) Microhabitat specialization in a species-rich palm community in Amazonian Ecuador. J Ecol 87(1):55–65

    Article  Google Scholar 

  • Svenning J (2001) On the role of microenvironmental heterogeneity in the ecology and diversification of neotropical rain-forest palms (Arecaceae). Bot Rev 67(1):1–53

    Article  Google Scholar 

  • Vázquez JA, Givnish TJ (1998) Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manantlán. J Ecol 86(6):999–1020

    Article  Google Scholar 

  • Vierling KT, Vierling LA, Gould WAG et al (2008) Lidar: shedding new light on habitat characterization and modelling. Front Ecol Environ 6(2):90–98

    Article  Google Scholar 

  • Vivian-Smith G (1997) Microtopographic heterogeneity and floristic diversity in experimental wetland communities. J Ecol 85(1):71–82

    Article  Google Scholar 

  • Willis KJ, Whittaker RJ (2002) Species diversity-scale matters. Science 295(5558):1245–1248

    Article  PubMed  CAS  Google Scholar 

  • Wilson JP, Galant JC (2000) Terrain analysis: principles and applications. Wiley, New York

    Google Scholar 

  • Zavaleta ES, Pasari JR, Hulvey KB et al (2010) Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc Natl Acad Sci 107(4):1443–1446

    Article  PubMed  CAS  Google Scholar 

  • Zinko U, Dynesius M, Nilsson C et al (2006) The role of soil pH in linking groundwater flow and plant species density in boreal forest landscapes. Ecography 29(4):515–524

    Article  Google Scholar 

Download references

Acknowledgments

We thank Bettina Nygaard for help accessing the NOVANA data and gratefully acknowledge funding from the Aarhus University Research Foundation via the Center for Interdisciplinary Geospatial Informatics Research (CIGIR), the Danish Strategic Research Council, Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation, and the Oticon Foundation (grant to J.E.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesper Erenskjold Moeslund.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moeslund, J.E., Arge, L., Bøcher, P.K. et al. Topographically controlled soil moisture drives plant diversity patterns within grasslands. Biodivers Conserv 22, 2151–2166 (2013). https://doi.org/10.1007/s10531-013-0442-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-013-0442-3

Keywords

Navigation