Skip to main content

Advertisement

Log in

Trait-dependent declines of species following conversion of rain forest to oil palm plantations

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Conversion of natural habitats to agriculture reduces species richness, particularly in highly diverse tropical regions, but its effects on species composition are less well-studied. The conversion of rain forest to oil palm is of particular conservation concern globally, and we examined how it affects the abundance of birds, beetles, and ants according to their local population size, body size, geographical range size, and feeding guild or trophic position. We re-analysed data from six published studies representing 487 species/genera to assess the relative importance of these traits in explaining changes in abundance following forest conversion. We found consistent patterns across all three taxa, with large-bodied, abundant forest species from higher trophic levels, declining most in abundance following conversion of forest to oil palm. Best-fitting models explained 39–66 % of the variation in abundance changes for the three taxa, and included all ecological traits that we considered. Across the three taxa, those few species found in oil palm tended to be small-bodied species, from lower trophic levels, that had low local abundances in forest. These species were often hyper-abundant in oil palm plantations. These results provide empirical evidence of consistent responses to land-use change among taxonomic groups in relation to ecological traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aratrakorn S, Thunhikorn S, Donald PF (2006) Changes in bird communities following conversion of lowland forest to oil palm and rubber plantations in southern Thailand. Bird Conserv Int 16:71–82

    Article  Google Scholar 

  • Attwood SJ, Maron M, House APN, Zammit C (2008) Do arthropod assemblages display globally consistent responses to intensified agricultural land use and management? Glob Ecol Biogeogr 17:585–599

    Article  Google Scholar 

  • Bernard H, Fjeldså J, Mohamed M (2009) A case study on the effects of disturbance and conversion of tropical lowland rain forest on the non-volant small mammals in north Borneo: management implications. Mamm Study 34:85–96

    Article  Google Scholar 

  • Berry NJ, Phillips OL, Lewis SL, Hill JK, Edwards DP, Tawatao NB, Ahmad N, Magintan D, Khen CV, Maryati M, Ong RC, Hamer KC (2010) The high value of logged tropical forests: lessons from northern Borneo. Biodivers Conserv 19:985–997

    Article  Google Scholar 

  • Birdlife International (2011) Species factsheets. Birdlife International, Cambridge. http://www.birdlife.org. Accessed Dec 2010

  • Blüthgen N, Gebauer G, Fiedler K (2003) Disentangling a rainforest food web using stable isotopes: dietary diversity in a species-rich ant community. Oecologia 137:426–435

    Article  PubMed  Google Scholar 

  • Bolton B, Alpert G, Ward PS, Nasrecki P (2006) Bolton’s catalogue of ants of the world. Harvard University Press, Cambridge

    Google Scholar 

  • Bouchard P, Bousquet Y, Davies AE, Alonso-Zarazaga MA, Lawrence JF, Lyal CHC, Newton AF, Reid CAM, Schmitt M, Slipiński SA, Smith ABT (2011) Family-group names in Coleoptera (Insecta). Zookeys 88:1–972

    Article  PubMed  Google Scholar 

  • Brühl CA, Eltz T (2010) Fuelling the biodiversity crisis: species loss of ground-dwelling forest ants in oil palm plantations in Sabah, Malaysia (Borneo). Biodivers Conserv 19:519–529

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  • Butler RA, Laurance WF (2009) Is oil palm the next emerging threat to the Amazon? Trop Conserv Sci 2:1–10

    Google Scholar 

  • Chey VK (2006) Impacts of forest conversion on biodiversity as indicated by moths. Malay Nat J 57:383–418

    Google Scholar 

  • Chung AYC, Eggleton P, Speight MR, Hammond PM, Chey VK (2000) The diversity of beetle assemblages in different habitat types in Sabah, Malaysia. Bull Entomol Res 90:475–496

    Article  PubMed  CAS  Google Scholar 

  • Cleary DFR, Boyle TJB, Setyawati T, Anggraeni CD, Loon EEV, Menken SBJ (2007) Bird species and traits associated with logged and unlogged forest in Borneo. Ecol Appl 17:1184–1197

    Article  PubMed  Google Scholar 

  • Damuth J (1981) Population density and body size in mammals. Nature 290:699–700

    Article  Google Scholar 

  • Danielsen F, Heegaard M (1995) Impact of logging and plantation development on species diversity: a case study from Sumatra. In: Sandbukt O (ed) Management of tropical forests: towards an integrated perspective. University of Oslo—Centre for Development and the Environment, Oslo

    Google Scholar 

  • Danielsen F, Beukema H, Burgess ND, Parish F, Bruhl CA, Donald PF, Murdiyarso D, Phalan B, Reijnders L, Struebig M, Fitzherbert EB (2009) Biofuel plantations on forested lands: double jeopardy for biodiversity and climate. Conserv Biol 23:348–358

    Article  PubMed  Google Scholar 

  • De Bello F, Lavorel S, Díaz S, Harrington R, Cornelissen J, Bardgett R, Berg M, Cipriotti P, Feld C, Hering D, Martins Da Silva P, Potts S, Sandin L, Sousa J, Storkey J, Wardle D, Harrison P (2010) Towards an assessment of multiple ecosystem processes and services via functional traits. Biodivers Conserv 19:2873–2893

    Article  Google Scholar 

  • Dunning JB Jr. (2009) CRC handbook of avian body masses, 2nd edn. Taylor & Francis, Boca Raton

    Google Scholar 

  • Edwards DP, Larsen TH, Docherty TDS, Ansell F, Hsu A, Derhé MA, Hamer KC, Wilcove DS (2011) Degraded lands worth protecting: the biological importance of Southeast Asia’s repeatedly logged forests. Proc R Soc Lond B 278:82–90

    Article  Google Scholar 

  • Faraway JJ (2006) Extending the linear model with R. CRC Press, Boca Raton

    Google Scholar 

  • Fayle TM, Turner EC, Snaddon JL, Chey VK, Chung AYC, Eggleton P, Foster WA (2010) Oil palm expansion into rain forest greatly reduces ant biodiversity in canopy, epiphytes and leaf-litter. Basic Appl Ecol 11:337–345

    Article  Google Scholar 

  • Fazey I, Fischer J, Lindenmayer DB (2005) What do conservation biologists publish? Biol Conserv 124:63–73

    Article  Google Scholar 

  • Feeley KJ, Terborgh JW (2006) Habitat fragmentation and effects of herbivore (Howler Monkey) abundances on bird species richness. Ecology 87:144–150

    Article  PubMed  Google Scholar 

  • Fitzherbert EB, Struebig MJ, Morel A, Danielsen F, Bruhl CA, Donald PF, Phalan B (2008) How will oil palm expansion affect biodiversity? Trends Ecol Evol 23:538–545

    Article  PubMed  Google Scholar 

  • Foster WA, Snaddon JL, Turner EC, Fayle TM, Cockerill TD, Ellwood MDF, Broad GR, Chung AYC, Eggleton P, Khen CV, Yusah KM (2011) Establishing the evidence base for maintaining biodiversity and ecosystem function in the oil palm landscapes of South East Asia. Philos Trans R Soc B 366:3277–3291

    Article  Google Scholar 

  • Freckleton RP, Harvey PH, Pagel M (2002) Phylogenetic analysis and comparative data: a test and review of evidence. Am Nat 160:712–726

    Article  PubMed  CAS  Google Scholar 

  • Gardner TA, Ribeiro-Junior MA, Barlow J, Avila-Pires TCS, Hoogmoed MS, Peres CA (2007) The value of primary, secondary, and plantation forests for a neotropical herpetofauna. Conserv Biol 21:775–787

    Article  PubMed  Google Scholar 

  • Gibb H, Cunningham SA (2011) Habitat contrasts reveal a shift in the trophic position of ant assemblages. J Anim Ecol 80:119–127

    Article  PubMed  Google Scholar 

  • Gray MA, Baldauf SL, Mayhew PJ, Hill JK (2007) The response of avian feeding guilds to tropical forest disturbance. Conserv Biol 21:133–141

    Article  PubMed  Google Scholar 

  • Gregory RD, Gaston KJ (2000) Explanations of commonness and rarity in British breeding birds: separating resource use and resource availability. Oikos 88:515–526

    Article  Google Scholar 

  • Grueber CE, Nakagawa S, Laws RJ, Jamieson IG (2011) Multimodel inference in ecology and evolution: challenges and solutions. J Evol Biol 24:699–711

    Article  PubMed  CAS  Google Scholar 

  • Hassall M, Jones DT, Taiti S, Latipi Z, Sutton SL, Mohammed M (2006) Biodiversity and abundance of terrestrial isopods along a gradient of disturbance in Sabah, East Malaysia. Eur J Soil Biol 42:S197–S207

    Article  Google Scholar 

  • Henle K, Davies KF, Kleyer M, Margules CR, Settele J (2004) Predictors of species sensitivity to fragmentation. Biodivers Conserv 13:207–251

    Article  Google Scholar 

  • Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr 75:3–35

    Article  Google Scholar 

  • Hunt T, Bergsten J, Levkanicova Z, Papadopoulou A, John OS, Wild R, Hammond PM, Ahrens D, Balke M, Caterino MS, Gómez-Zurita J, Ribera I, Barraclough TG, Bocakova M, Bocak L, Vogler AP (2007) A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science 318:1913–1916

    Article  PubMed  CAS  Google Scholar 

  • Jeyarajasingam A, Pearson A (1999) A field guide to the birds of West Malaysia and Singapore. Oxford University Press, Oxford

    Google Scholar 

  • Kareiva P (1987) Habitat fragmentation and the stability of predator ± prey interactions. Nature 326:388–390

    Article  Google Scholar 

  • Kissinger G, Herold M, De Sy V (2012) Drivers of deforestation and forest degradation: a synthesis report for REDD + policymakers. Lexeme Consulting, Vancouver

    Google Scholar 

  • Lambert FR (1992) The consequences of selective logging for Bornean lowland forest birds. Philos Trans R Soc B 335:443–457

    Article  Google Scholar 

  • Larsen TH, Williams NM, Kremen C (2005) Extinction order and altered community structure rapidly disrupt ecosystem functioning. Ecol Lett 8:538–547

    Article  PubMed  Google Scholar 

  • Laurance WF, Lovejoy TE, Vasconcelos HL, Bruna EM, Didham RK, Stouffer PC, Gascon C, Bierregaard RO, Laurance SG, Sampaio E (2002) Ecosystem decay of Amazonian forest fragments: a 22-year investigation. Conserv Biol 16:605–618

    Article  Google Scholar 

  • Laurance WF, Koh LP, Butler R, Sodhi NS, Bradshaw CJA, Neidel JD, Consunji H, Vega JM (2010) Improving the performance of the roundtable on sustainable palm oil for nature conservation. Conserv Biol 24:377–381

    Article  PubMed  Google Scholar 

  • Lavorel S, Garnier E (2002) Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct Ecol 16:545–556

    Article  Google Scholar 

  • Layman CA, Arrington DA, Montaña CG, Post DM (2007) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48

    Article  PubMed  Google Scholar 

  • Lewis OT (2009) Biodiversity change and ecosystem function in tropical forests. Basic Appl Ecol 10:97–102

    Article  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294:804–808

    Article  PubMed  CAS  Google Scholar 

  • Lucey JM, Hill JK (2012) Spillover of insects from rain forest into adjacent oil palm plantations. Biotropica 44:368–377

    Article  Google Scholar 

  • Mackinnon JR, Phillipps K (1999) A field guide to the birds of Borneo, Sumatra, Java and Bali, 5th edn. Oxford University Press, Oxford

    Google Scholar 

  • Mazerolle MJ (2006) Improving data analysis in herpetology: using Akaike’s information criterion (AIC) to assess the strength of biological hypotheses. Amphib-reptil 27:169–180

    Article  Google Scholar 

  • McGill BJ, Enquist BJ, Weiher E, Westoby M (2006) Rebuilding community ecology from functional traits. Trends Ecol Evol 21:178–185

    Article  PubMed  Google Scholar 

  • Mckinney ML (1997) Extinction vulnerability and selectivity: combining ecological and paleontological views. Annu Rev Ecol Syst 28:495–516

    Article  Google Scholar 

  • Moran C, Catterall CP, Kanowski J (2009) Reduced dispersal of native plant species as a consequence of the reduced abundance of frugivore species in fragmented rainforest. Biol Conserv 142:541–552

    Article  Google Scholar 

  • Morris RJ (2010) Anthropogenic impacts on tropical forest biodiversity: a network structure and ecosystem functioning perspective. Philos Trans R Soc B 365:3709–3718

    Article  Google Scholar 

  • Nichols E, Larsen TB, Spector S, Davis ALV, Escobar F, Favila M, Vulinec K, Network TSR (2007) Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis. Biol Conserv 137:1–19

    Article  Google Scholar 

  • Novotny V, Drozd P, Miller SE, Kulfan M, Janda M, Basset Y, Weiblen GD (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science 313:1115–1118

    Article  PubMed  CAS  Google Scholar 

  • Pagel M (1999) Inferring the historical patterns of biological evolution. Nature 401:877–884

    Article  PubMed  CAS  Google Scholar 

  • Peh KS-H, Lewis SL (2012) Conservation implications of recent advances in biodiversity-functioning research. Biol Conserv 151:26–31

    Article  Google Scholar 

  • Peh KS-H, Sodhi NS, De Jong J, Sekercioglu CH, Yap CA-M, Lim SL-H (2006) Conservation value of degraded habitats for forest birds in southern Peninsular Malaysia. Divers Distrib 12:572–581

    Article  Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411

    Article  Google Scholar 

  • Phillipps Q, Phillipps K (2009) Phillipp’s field guide to the birds of Borneo, 1st edn. John Beaufoy Publishing Ltd., Oxford

    Google Scholar 

  • Post DM (2002) Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83:703–718

    Article  Google Scholar 

  • Schielzeth H (2010) Simple means to improve the interpretability of regression coefficients. Methods Ecol Evol 1:103–113

    Article  Google Scholar 

  • Sheldon FH, Styring A, Hosner PA (2010) Bird species richness in an exotic tree plantation: a long term perspective. Biol Conserv 143:399–407

    Article  Google Scholar 

  • Sibley CG, Ahlquist JE (1990) Phylogeny and classification of birds: a study in molecular evolution. Yale University Press, New Haven

    Google Scholar 

  • Sibley CG, Monroe BL (1990) Distribution and taxonomy of birds of the world. Yale University Press, New Haven

    Google Scholar 

  • Sodhi NS, Koh LP, Clements R, Wanger TC, Hill JK, Hamer KC, Clough Y, Tscharntke T, Posa MRC, Lee TM (2010) Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biol Conserv 143:2375–2384

    Article  Google Scholar 

  • Terborgh J (1974) Preservation of natural diversity: the problem of extinction prone species. Bioscience 24:715–722

    Article  Google Scholar 

  • Terborgh J, Lopez L, Nuñez P, Rao M, Shahabuddin G, Orihuela G, Riveros M, Ascanio R, Adler GH, Lambert TD, Balbas L (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926

    Article  PubMed  CAS  Google Scholar 

  • Turner EC, Foster WA (2009) The impact of forest conversion to oil palm on arthropod abundance and biomass in Sabah. Malays J Trop Ecol 25:23–30

    Article  Google Scholar 

  • Vanderklift MA, Ponsard S (2003) Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136:169–182

    Article  PubMed  Google Scholar 

  • Velho N, Ratnam J, Srinivasan U, Sankaran M (2012) Shifts in community structure of tropical trees and avian frugivores in forest recovering from past logging. Biol Conserv 153:32–40

    Article  Google Scholar 

  • Walker JS (2006) Resource use and rarity among frugivorous birds in a tropical rain forest on Sulawesi. Biol Conserv 130:60–69

    Article  Google Scholar 

  • Wilcove DS, Koh LP (2010) Addressing the threats to biodiversity from oil palm agriculture. Biodivers Conserv 19:999–1007

    Article  Google Scholar 

  • Williams NM, Crone EE, Roulston TH, Minckley RL, Packer L, Potts SG (2010) Ecological and life-history traits predict bee responses to environmental disturbances. Biol Conserv 143:2280–2291

    Article  Google Scholar 

  • Wong M (1986) Trophic organization of understory birds in a Malaysian Dipterocarp forest. Auk 103:100–116

    Google Scholar 

  • Wood BJ, Chung GF (2003) A critical review of the development of rat control in Malaysian agriculture since the 1960s. Crop Prot 22:445–461

    Article  Google Scholar 

  • Woodcock P (2011) The species composition and trophic structure of ant assemblages in primary and degraded rainforest in Sabah, Borneo. Unpublished PhD dissertation, University of Leeds, UK

  • Woodcock P, Edwards DP, Fayle TM, Newton RJ, Khen CV, Bottrell SH, Hamer KC (2011) The conservation value of South East Asia’s highly degraded forests: evidence from leaf-litter ants. Philos Trans R Soc B 366:3256–3264

    Article  Google Scholar 

  • Woodcock P, Edwards D, Newton R, Edwards F, Khen C, Bottrell SH, Hamer KC (2012) Assessing trophic position from nitrogen isotope ratios: effective calibration against spatially varying baselines. Naturwissenschaften 99:275–283

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Special thanks go to Arthur Chung for providing his data for analyses, to Calvin Dytham and Olivier Missa for statistical advice, NERC and Proforest for funding, Noel Tawatao for providing accumulated body mass data from antweb.org, Martin Speight for providing Arthur Chung’s PhD thesis, Callum Lawson for discussing the manuscript, and Jake Snaddon and Toby Gardner for comments on earlier versions of the manuscript. TMF was funded by the project Biodiversity of forest ecosystems CZ.1.07/2.3.00/20.0064 co-financed by the European Social Fund and the state budget of the Czech Republic, and by Yayasan Sime Darby.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. M. Senior.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 35 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senior, M.J.M., Hamer, K.C., Bottrell, S. et al. Trait-dependent declines of species following conversion of rain forest to oil palm plantations. Biodivers Conserv 22, 253–268 (2013). https://doi.org/10.1007/s10531-012-0419-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-012-0419-7

Keywords

Navigation