Skip to main content

Advertisement

Log in

Performance of camera trapping and track counts for surveying large mammals in rainforest remnants

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Getting information on terrestrial large mammals is particularly difficult in tropical rainforests and in altered landscapes, since the traditionally used method (line-transect census) presents low efficiency in dense vegetation, and is difficult to standardize among heterogeneous, fragmented areas where the small size of patches restricts the length of transects. Aiming to generate information to guide the choice of field protocols for surveying terrestrial large mammals in heterogeneous rainforest remnants, we compared the performance and the correlation between the results of two alternative techniques (track counts and camera trapping), and of two types of bait, in 24 forest remnants in a fragmented Atlantic forest landscape. Techniques resulted in similar observed and estimated richness and species composition at the study landscape, including medium-sized and nocturnal species usually poorly represented in line-transect censuses. Although camera trapping resulted in a higher recording rate of the most common species (Didelphis aurita) and track counts in higher recording rates of some less common species (e.g. Dasypus novemcinctus), observed richness and recording rates of most species were correlated across the 24 sites between techniques. Conversely, the use of different baits strongly influenced results, indicating the importance of standardizing baits in comparative studies. Our results suggest that the two alternative techniques present similar performance and are suitable for studying the factors affecting the distribution of large mammals in altered rainforest landscapes. The choice of field protocols should then focus on the available resources and infrastructure, and on particularities of the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andelt WF, Woolley TP (1996) Responses of urban mammals to odor attractants and a bait-dispensing device. Wildl Soc B 24:111–118

    Google Scholar 

  • Bali A, Kumar A, Krishnaswamy J (2007) The mammalian communities in coffee plantations around a protected area in the Western Ghats, India. Biol Conserv 139:93–102

    Article  Google Scholar 

  • Ballesteros C, Carrasco-García R, Vicente J et al (2009) Selective piglet feeders improve age-related bait specificity and uptake rate in overabundant Eurasian wild boar populations. Wildl Res 36:203–212

    Article  Google Scholar 

  • Barea-Azcón JM, Virgós E, Ballesteros-Duperón E et al (2007) Surveying carnivores at large spatial scales: a comparison of four broad-applied methods. Biodivers Conserv 16:1213–1230

    Article  Google Scholar 

  • Bull EL, Holthausen RS, Bright LR (1992) Comparison of three techniques to monitor marten. Wildl Soc B 20:406–410

    Google Scholar 

  • Burki S, Roth T, Robin K, Weber D (2010) Lure sticks as a method to detect pine martens Martes martes. Acta Theriol 55:223–230

    Article  Google Scholar 

  • Campbell TA, Long DB (2008) Mammalian visitation to candidate feral swine attractants. J Wildl Manage 72:305–309

    Article  Google Scholar 

  • Carrillo E, Wong G, Cuarón AD (2000) Monitoring mammal population in Costa Rican protected areas under different hunting restrictions. Conserv Biol 24:1580–1591

    Article  Google Scholar 

  • Cheida CC, Nakano-Oliveira E, Fusco-Costa R et al (2006) Ordem Carnivora. In: Reis NR, Peracchi AL, Pedro WA et al (eds) Mamíferos do Brasil, 1st edn. Nélio R. dos Reis, Londrina

    Google Scholar 

  • Chiarello AG (1999) Effects of fragmentation of the Atlantic forest on mammal communities in south-eastern Brazil. Biol Conserv 89:71–82

    Article  Google Scholar 

  • Colwell RK (2009) EstimateS: statistical estimation of species richness and shared species from samples, version 7.52. http://purl.oclc.org/estimates. Accessed 19 February 2010

  • Crawley MJ (2007) The R book. Wiley, Chichester

    Book  Google Scholar 

  • Crooks K (2002) Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv Biol 16:488–502

    Article  Google Scholar 

  • Cullen L Jr, Bodmer ER, Valladares-Padua C (2000) Effects of hunting in habitat fragments of the Atlantic forests, Brazil. Biol Conserv 95:49–56

    Article  Google Scholar 

  • Cutler TL, Swann DE (1999) Using remote photography in wildlife ecology: a review. Wildl Soc B 27:571–581

    Google Scholar 

  • de Thoisy B, Brosse S, Dubois M (2008) Assessment of large-vertebrate species richness and relative abundance in Neotropical forest using line-transect censuses: What is the minimal effort required? Biodivers Conserv 17:2627–2644

    Article  Google Scholar 

  • Di Bitetti MS, Paviolo A, Ferrari CA et al (2008) Differential responses to hunting in two sympatric species of brocket deer (Mazama americana and M. nana). Biotropica 40:636–645

    Article  Google Scholar 

  • Dirzo R, Miranda A (1990) Contemporary Neotropical defaunation and the forest structure, function, and diversity—a sequel to John Terborgh. Conserv Biol 4:444–447

    Article  Google Scholar 

  • Fonseca GAB, Herrmann G, Leite YLR et al (1996) Lista anotada dos mamíferos do Brasil. Occasional papers in Conserv Biol 4:1–38

    Google Scholar 

  • Foresman KR, Pearson DE (1998) Comparison of proposed survey procedures for detection of forest carnivores. J Wildl Manage 62:1217–1226

    Article  Google Scholar 

  • Gardner B, Royle JA, Wegan MT et al (2010) Estimating black bear density using DNA data from hair snares. J Wildl Manage 74:318–325

    Article  Google Scholar 

  • Gompper ME, Kays RW, Ray JC et al (2006) A comparison of noninvasive techniques to survey carnivore communities in Northeastern North America. Wildl Soc B 34:1142–1151

    Article  Google Scholar 

  • Grigione MM, Burman P, Bleich VC et al (1999) Identifying individual mountain lions Felis concolor by their tracks: refinement of an innovative technique. Biol Conserv 88:25–32

    Article  Google Scholar 

  • Harmsen BJ, Foster RJ, Silver S et al (2010) Differential use of trails by forest mammals and the implications for camera-trap studies: a case study from Belize. Biotropica 42:126–133

    Article  Google Scholar 

  • Harvey CA, Gonzalez J, Somarriba E (2006) Dung beetle and terrestrial mammal diversity in forests, indigenous agroforestry systems and plantain monocultures in Talamanca, Costa Rica. Biodivers Conserv 15:555–585

    Article  Google Scholar 

  • Haugaasen T, Peres CA (2005) Mammal assemblage structure in Amazonian flooded and unflooded forests. J Trop Ecol 21:133–145

    Article  Google Scholar 

  • Jennelle CS, Runge MC, MacKenzie DI (2002) The use of photographic rates to estimate densities of tigers and other cryptic mammals: a comment on misleading conclusions. Anim Conserv 5:119–120

    Article  Google Scholar 

  • Lyra-Jorge MC, Ciocheti G, Pivello VR et al (2008) Comparing methods for sampling large- and medium-sized mammals: camera traps and track plots. Eur J Wildl Res 54:739–744

    Article  Google Scholar 

  • McCullagh P, Nelder JA (1989) Generalized linear models. Chapman and Hall, London

    Google Scholar 

  • McDaniel GW, McKelvey KS, Squires JR et al (2000) Efficacy of lures and hair snares to detect lynx. Wildl Soc B 28:119–123

    Google Scholar 

  • Michalski F, Peres CA (2007) Disturbance mediated mammal persistence and abundance-area relationships in Amazonian forest fragments. Conserv Biol 21:1626–1640

    PubMed  Google Scholar 

  • Michalski F, Crawshaw PG Jr, Oliveira TG et al (2007) Efficiency of box-traps and leg-hold traps with several bait types for capturing small carnivores (Mammalia) in a disturbed area of Southeastern Brazil. Rev Biol Trop 55:315–320

    PubMed  Google Scholar 

  • Morrison JC, Sechrest W, Dinerstein E et al (2007) Persistence of large mammal faunas as indicators of global human impacts. J Mammal 88:1363–1380

    Article  Google Scholar 

  • Naughton-Treves L, Mena JL, Treves A et al (2003) Wildlife survival beyond park boundaries: the impact of slash-and-burn agriculture and hunting on mammals in Tambopata, Peru. Conserv Biol 17:1106–1117

    Article  Google Scholar 

  • Norris D, Peres CA, Michalski F et al (2008) Terrestrial mammal responses to edges in Amazonian forest patches: a study based on track stations. Mammalia 72:15–23

    Article  Google Scholar 

  • O’Brien TG, Baillie JEM, Krueger L et al (2010) The Wildlife Picture Index: monitoring top trophic levels. Anim Conserv 13:335–343

    Article  Google Scholar 

  • Oliveira-Filho AT, Fontes MA (2000) Patterns of floristic differentiation among Atlantic forests in southeastern Brazil and the influence of climate. Biotropica 32:793–810

    Google Scholar 

  • Pardini R, Ditt EH, Cullen L Jr et al (2003) Levantamento rápido de mamíferos terrestres de médio e grande porte. In: Cullen L Jr, Rudran R, Valladares-Padua C (eds) Métodos de estudos em biologia da conservação e manejo da vida silvestre, 1st edn. Editora UFPR, Paraná

    Google Scholar 

  • Parry L, Barlow J, Peres CA (2007) Large-vertebrate assemblages of primary and secondary forests in the Brazilian Amazon. J Trop Ecol 23:653–662

    Article  Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-PLUS. Springer-Verlag, New York

    Book  Google Scholar 

  • Prugh L, Stoner CJ, Epps CW et al (2009) The rise of the mesopredators. Bioscience 9:779–791

    Article  Google Scholar 

  • R Development Core Team (2008) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ribeiro MC, Metzger JP, Ponzoni F et al (2009) Brazilian Atlantic Forest: How much is left and how the remaining forest is distributed? Implications for conservation. Biol Conserv 142:1141–1153

    Article  Google Scholar 

  • Robinson JG, Bennett EL (2004) Having your wildlife and eating it too: an analysis of hunting sustainability across tropical ecosystems. Anim Conserv 7:397–408

    Article  Google Scholar 

  • Royle JA, Nichols JD (2003) Estimating abundance from repeated presence absence data or point counts. Ecology 84:777–790

    Article  Google Scholar 

  • Short J, Turner B, Risbey D (2002) Control of feral cats for nature conservation. Wildl Res 29:475–487

    Article  Google Scholar 

  • Silveira L, Jácomo ATA, Diniz-Filho JF (2003) Camera trap, line transect census and track surveys: a comparative evaluation. Biol Conserv 114:351–355

    Article  Google Scholar 

  • Simberloff D (1998) Flagships, umbrellas, and keystones: is single species management passé in the landscape era? Biol Conserv 83:247–257

    Article  Google Scholar 

  • Srbek-Araujo AC, Chiarello AG (2005) Is camera-trapping an efficient method for surveying mammals in Neotropical forests? A case study in south-eastern Brazil. J Trop Ecol 21:121–125

    Article  Google Scholar 

  • Stanley TR, Royle JA (2005) Estimating site occupancy and abundance using indirect detection indices. J Wildl Manage 69:874–883

    Article  Google Scholar 

  • Terborgh J (1988) The big things that run the world—a sequel to E.O. Wilson. Conserv Biol 2:402–403

    Article  Google Scholar 

  • Terborgh J, Lawrence L, Nuñes P et al (2001) Ecological meltdown in predator-free forest fragments. Science 294:1923–1926

    Article  PubMed  CAS  Google Scholar 

  • Thorn M, Scott DM, Green M et al (2009) Estimating brown hyena occupancy using baited camera traps. S Afr J Wildl Res 39:1–10

    Article  Google Scholar 

  • Tobler MW, Carrillo-Percastegui E, Pitman RL et al (2008) An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Anim Conserv 11:169–178

    Article  Google Scholar 

  • Tomas WM, Miranda GHB (2003) Uso de armadilhas fotográficas em levantamentos populacionais. In: Cullen L Jr, Rudran R, Valladares-Padua C (eds) Métodos de estudos em biologia da conservação e manejo da vida silvestre, 1st edn. Editora UFPR, Paraná

    Google Scholar 

  • Trolle M (2003) Mammal survey in the Rio Jauaperí region, Rio Negro Basin, the Amazon, Brazil. Mammalia 1:75–83

    Article  Google Scholar 

  • Trolle M, Noss AJ, Cordeiro ALP et al (2008) Brazilian tapir density in the Pantanal: a comparison of systematic camera-trapping and line-transect surveys. Biotropica 40:211–217

    Article  Google Scholar 

  • Wayne AF, Cawling A, Ward CG et al (2005) A comparison of survey methods for arboreal opossums in Jarrah forest, Westerns Australia. Wildl Res 32:701–714

    Article  Google Scholar 

  • Weckel M, Giuliano W, Silver S (2006) Jaguar (Panthera onca) feeding ecology: distribution of predator and prey through time and space. J Zool 270:25–30

    Google Scholar 

  • Wilson GJ, Delahay RJ (2001) A review of methods to estimate the abundance of terrestrial carnivores using field signs and observation. Wildl Res 28:151–164

    Article  Google Scholar 

  • Wright SJ, Gompper ME, DeLon B (1994) Are large predator keystones species in Neotropical forests? The evidence from Barro Colorado Island. Oikos 71:279–294

    Article  Google Scholar 

  • Wright SJ, Hernandéz A, Condit R (2007) The bushmeat harvest alters seedling banks by favoring lianas, large seeds, and seeds dispersed by bats, birds, and wind. Biotropica 39:363–371

    Article  Google Scholar 

Download references

Acknowledgments

We thank Adriana Pardini for reviewing the English version of the manuscript; O. Nunes, G. Oliveira, R.D. Espartosa, D. Bortotto, E. Friggeri, D. Drigo, F.C. Marques, M.L. Espartosa, C.J. Espartosa for invaluable help during fieldwork; M.C. Ribeiro and T. Püttker for the preparation of the land cover maps; and FAPESP (05/56555-4, 05/57521-6) and Brazil–Germany cooperation program for the Atlantic forest—CNPq/BMBF (690144/01-6) for grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renata Pardini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Espartosa, K.D., Pinotti, B.T. & Pardini, R. Performance of camera trapping and track counts for surveying large mammals in rainforest remnants. Biodivers Conserv 20, 2815–2829 (2011). https://doi.org/10.1007/s10531-011-0110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0110-4

Keywords

Navigation