Skip to main content

Advertisement

Log in

Assessment of regional and local biodiversity in tropical and subtropical coastal habitats in the East African Marine Ecoregion

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The transboundary networks of Marine Protected Areas (MPAs) project, TRANSMAP, assessed local turnover and regional biodiversity across the East African Marine Ecoregion, where inter-governmental co-operation has been working to connect local MPAs. The benthic fauna in the three most dominant habitats on this coastline—beaches, mangroves and seagrasses—were studied in two Regions (Northern Region, 10–13°S; Southern Region, 25–28°S). Meiofaunal taxa were used as the model faunal group owing to their diversity and abundance across habitat types and environmental conditions. Meiofaunal abundance averaged 2,500 individuals 10 cm−2 and was generally higher in mangrove and seagrass sediments than on the beaches, and was significantly different between habitats × Regions. In total, 18 taxa were recorded with highest diversity in the beach samples. Diversity indices and assemblage structure were significantly different between habitats, but also Regions. Specific granulometric 1Φ size classes, shore-height and number of rain days were the factors most significantly correlating with the observed assemblage patterns. Additionally, the size of a MPA and latitude (which correlated with MPA age, but not number of rain days), were the factors fitting best with meiofaunal assemblage patterns across the beaches, the habitat for which the most comprehensive data were generated. Sample diversity was higher in the Southern Region, and although within- and across-habitats diversity were similar across the Regions, the two Regions appeared to provide complementary habitats and supported different assemblages. Within the Regions, beaches (the only habitat for which more than one location was sampled) were significantly different between Locations, supporting the establishment of multiple protected locations of the same habitat within each transboundary MPA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

°C:

Degrees centigrade

μm:

Micrometres

ANOSIM:

Analysis of similarity

ANOVA:

Analysis of variance

BDI:

Beach Deposit Index

BI:

Beach Index

EAME:

East African Marine Ecoregion

EC:

European Commission

GPS:

Global Positioning System

HW:

High water

INCO-DEV:

International Co-operation for Development

km:

Kilometres

L:

Lower-shore

LW:

Low water

m:

Metre

M:

Mid-shore

MHWN:

Mean high water neap

MHWS:

Mean high water spring

MLWN:

Mean low water neap

MLWS:

Mean low water spring

mm:

Millimetres

MPA:

Marine Protected Area

NHM:

Natural History Museum, London

PERMANOVA:

Permutational multivariate analysis of variance

PRIMER:

Plymouth routines in multivariate ecological research

TRANSMAP:

Transboundary networks of Marine Protected Areas for integrated conservation and sustainable development: biophysical, socio-economic and governance assessment in East Africa

U:

Upper-shore

WWF:

World Wide Fund for Nature

y/n:

Yes/no

References

  • Albuquerque EF, Pinto APB, de Queiroz Perez AA, Veloso VG (2007) Spatial and temporal changes in interstitial meiofauna on a sandy ocean beach of South America. Braz J Oceanogr 55(2):121–131

    Article  Google Scholar 

  • Alongi DM (1987a) Intertidal zonation and seasonality of meiobenthos in tropical mangrove estuaries. Mar Biol 95(3):447–458

    Article  Google Scholar 

  • Alongi DM (1987b) The influence of mangrove-derived tannins on intertidal meiobenthos in tropical estuaries. Oecologia 71(4):537–540

    Article  Google Scholar 

  • Alongi DM, Christoffersen P (1992) Benthic infauna and organism–sediment relations in a shallow, tropical coastal area—influence of outwelled mangrove detritus and physical disturbance. Mar Ecol Prog Ser 81(3):229–245

    Article  Google Scholar 

  • Alongi DM, Boto KG, Tirendi F (1989) Effect of exported mangrove litter on bacterial productivity and dissolved organic-carbon fluxes in adjacent tropical nearshore sediments. Mar Ecol Prog Ser 56(1–2):133–144

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Ansari ZA (1984) Benthic macro and meiofauna of seagrass (Thalassia-hemprichii) bed at, Minicoy, Lakshadweep. Indian J Mar Sci 13(3):126–127

    Google Scholar 

  • Ansari ZA, Parulekar AH (1994) Meiobenthos in the sediments of seagrass meadows of Lakshadweep Atolls, Arabian Sea. Vie Milieu 44(3/4):185–190

    Google Scholar 

  • Ansari ZA, Ramani P, Rivonker CU, Parulekar AH (1990) Macro and meiofaunal abundance in six sandy beaches of Lakshadweep islands. Indian J Mar Sci 19:159–164

    Google Scholar 

  • Armonies W, Reise K (2000) Faunal diversity across a sandy shore. Mar Ecol Prog Ser 196:49–57

    Article  Google Scholar 

  • Attrill MJ (2002) A testable linear model for diversity trends in estuaries. J Anim Ecol 71:262–269

    Article  Google Scholar 

  • Barnes N, Bamber RN, Moncrieff CB, Sheader M, Ferrero TJ (2008) Meiofauna in closed coastal saline lagoons in the United Kingdom: structure and biodiversity of the nematode assemblage. Estuar Coast Shelf Sci 79(2):328–340

    Article  Google Scholar 

  • Boaden PJS (1968) Water movement: a dominant factor in interstitial ecology. Sarsia 34:125–136

    Google Scholar 

  • Boström C, Jackson EL, Simenstad CA (2006) Seagrass landscapes and their effects on associated fauna: a review. Estuar Coast Shelf Sci 68:383–403

    Article  Google Scholar 

  • Buchanan JB (1984) Sediment analysis. In: Holmes NA, McIntyre AD (eds) Methods for the study of marine benthos. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Chinnadurai G, Fernando OJ (2003) Meiofauna of Pichavaram mangroves along southeast coast of India. J Mar Biol Assoc India 45(2):158–165

    Google Scholar 

  • Chinnadurai G, Fernando OJ (2006) Meiobenthos of Cochin mangroves (Southwest coast of India) with emphasis on free-living marine nematode assemblages. Russ J Nematol 14(2):127–137

    Google Scholar 

  • Clarke KR, Gorley RN (2001) PRIMER v5: user manual/tutorial. PRIMER-E, Plymouth. http://web.pml.ac.uk/primer/index.html. Accessed 10 June 2009

  • Clarke KR, Warwick RM (1994) Change in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, Plymouth. ISBN 1855311402

  • Coull BC (1999) Role of meiofauna in estuarine soft-bottom habitats. Aust J Ecol 24(4):327–343

    Article  Google Scholar 

  • Danovaro R (1996) Detritus–bacteria–meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean. Mar Biol 127(1):1–13

    Article  CAS  Google Scholar 

  • Day JW, Coronado Molina C, Vera Herrera FR, Twilley R, Rivera Monroy VH, Alvarez Guillen H, Day R, Conner W (1996) A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest. Aquat Bot 55(1):39–60

    Article  Google Scholar 

  • de Boer WF (2000) Biomass dynamics of seagrasses and the role of mangrove and seagrass vegetation as different nutrient sources for an intertidal ecosystem. Aquat Bot 66(3):225–239

    Article  Google Scholar 

  • de Boer WF, Prins HHT (2002) Human exploitation and benthic community structure on a tropical intertidal flat. J Sea Res 48(3):225–240

    Article  Google Scholar 

  • de Jonge VN, Bouwman LA (1977) A simple density separation technique for quantitative isolation of meiobenthos using the colloidal silica gel Ludox T.M. Mar Biol 42:143–148

    Article  Google Scholar 

  • de la Huz R, Lastra M (2008) Effects of morphodynamic state on macrofauna community of exposed sandy beaches of Galician coast. PSZNI Mar Ecol 29(Suppl 1):150–159

    Google Scholar 

  • de la Torre-Castro M, Ronnback P (2004) Links between humans and seagrasses—an example from tropical East, Africa. Ocean Coast Manag 47(7–8):361–387

    Google Scholar 

  • De Troch M, Gurdebeke S, Fiers F, Vincx M (2001) Zonation and structuring factors of meiofauna communities in a tropical seagrass bed (Gazi Bay, Kenya). J Sea Res 45(1):45–61

    Article  Google Scholar 

  • De Troch M, Van Gansbeke D, Vincx M (2006) Resource availability and meiofauna in sediment of tropical seagrass beds: local versus global trends. Mar Environ Res 61(1):59–73

    Article  PubMed  Google Scholar 

  • Decho AW, Hummon WD, Fleeger JW (1985) Meiofauna–sediment interactions around sub-tropical seagrass sediments using factor-analysis. J Mar Res 43(1):237–255

    Article  Google Scholar 

  • Defeo O, McLachlan A, Schoeman DS, Schlacher TA, Dugan J, Jones A, Lastra M, Scapini F (2009) Threats to sandy beach ecosystems: a review. Estuar Coast Shelf Sci 81:1–12

    Article  Google Scholar 

  • Dye AH (1983) Composition and seasonal fluctuations of meiofauna in a Southern African mangrove estuary. Mar Biol 73:165–170

    Article  Google Scholar 

  • Dye AH (2006) Persistent effects of physical disturbance on meiobenthos in mangrove sediments. Mar Environ Res 62(5):341–355

    Article  PubMed  CAS  Google Scholar 

  • Dye AH, McLachlan A, Wooldridge T (1981) The ecology of sandy beaches in Natal. S Afr J Zool 16:200–209

    Google Scholar 

  • Edgar GJ (1999) Experimental analysis of structural versus trophic importance of seagrass beds. I. Effects on macrofaunal and meiofaunal invertebrates. Vie Milieu 49(4):239–248

    Google Scholar 

  • Edgar GJ, Shaw C, Watson GF, Hammond LS (1994) Comparisons of species richness, size-structure and production of benthos in vegetated and unvegetated habitats in Western-Port, Victoria. J Exp Mar Biol Ecol 176(2):201–226

    Article  Google Scholar 

  • Elmgren R (1973) Methods of sampling sublittoral soft bottom meiofauna. Oikos 15(Suppl):112–120

    Google Scholar 

  • Ewel KC, Cressa C, Kneib RT, Lake PS, Levin LA, Palmer MA, Snelgrove P, Wall DH (2001) Managing critical transition zones. Ecosystems 4(5):452–460

    Article  Google Scholar 

  • Ferrero TJ, Debenham NJ, Lambshead PJD (2008) The nematodes of the Thames estuary: assemblage structure and biodiversity, with a test of Attrill’s linear model. Estuar Coast Shelf Sci 79(3):409–418

    Article  Google Scholar 

  • Gee JM, Somerfield PJ (1997) Do mangrove diversity and leaf litter decay promote meiofaunal diversity? J Exp Mar Biol Ecol 218(1):13–33

    Article  Google Scholar 

  • Giere O (1993) Meiobenthology. The microscopic fauna in aquatic sediments. Springer, Berlin

    Google Scholar 

  • Gomes CAA, Santos PJP, Alves TNC, Rosa-Filho JS, Souza-Santos LP (2002) Variação temporal da meiofauna em área de manguezal em Itamaracá-Pernambuco. Atlântica 24:89–96

    Google Scholar 

  • Gourbault N, Warwick RM, Helleouet MN (1998) Spatial and temporal variability in the composition and structure of meiobenthic assemblages (especially nematodes) in tropical beaches (Guadeloupe, FWI). Cah Biol Mar 39(1):29–39

    Google Scholar 

  • Gullstrom M, de la Torre Castro M, Bandeira SO, Bjork M, Dahlberg M, Kautsky N, Ronnback P, Ohman MC (2002) Seagrass ecosystems in the Western Indian Ocean. Ambio 31(7–8):588–596

    PubMed  Google Scholar 

  • Harris RP (1972) The distribution and ecology of the interstitial meiofauna of a sandy beach at Whitsand Bay, east Cornwall. J Mar Biol Assoc UK 52:1–18

    Article  Google Scholar 

  • Hemminga MA, Slim FJ, Kazungu J, Ganssen GM, Nieuwenhuize J, Kruyt NM (1994) Carbon outwelling from a mangrove forest with adjacent seagrass beds and coral-reefs (Gazi Bay, Kenya). Mar Ecol Prog Ser 106(3):291–301

    Article  Google Scholar 

  • Higgins RP, Thiel H (1988) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, DC

    Google Scholar 

  • Hillebrand H (2004) Strength, slope and variability of marine latitudinal gradients. Mar Ecol Prog Ser 273:251–267

    Article  Google Scholar 

  • Hooge MD (1999) Abundance and horizontal distribution of meiofauna on a Northern California beach. Pac Sci 53(3):305–315

    Google Scholar 

  • Hulings NC (1974) A temporal study of Lebanese sand beach meiofauna. Cah Biol Mar 15:319–335

    Google Scholar 

  • Kalk M (1995) A natural history of Inhaca Island. Witwatersrand University Press, Johannesburg

    Google Scholar 

  • Kemp J (2000) WWF—East African marine ecoregion: biological reconnaissance final report. http://eame.wiomsa.org/pubs/EAME-Bio-Recce.pdf. Accessed 19 Feb 2008

  • Kotta J, Boucher G (2001) Interregional variation of free-living nematode assemblages in tropical coral sands. Cah Biol Mar 42(4):315–326

    Google Scholar 

  • Kotwicki L, Szymelfenig M, De Troch M, Urban-Malinga B, Weslawski JM (2005) Latitudinal biodiversity patterns of meiofauna from sandy littoral beaches. Biodivers Conserv 14:461–474

    Article  Google Scholar 

  • Kristensen E, Bouillon S, Dittmar T, Marchand C (2008) Organic carbon dynamics in mangrove ecosystems: a review. Aquat Bot 89(2):201–219

    Article  CAS  Google Scholar 

  • Lambshead PJD, Brown CJ, Ferrero TJ, Mitchell NJ, Smith CR, Hawkins LE, Tietjen J (2002) Latitudinal diversity patterns of deep-sea marine nematodes and organic fluxes: a test from the central equatorial Pacific. Mar Ecol Prog Ser 236:129–135

    Article  Google Scholar 

  • Levin LA, Boesch DF, Covich A, Dahm C, Erséus C, Ewel KC, Kneib RT, Moldenke A, Palmer MA, Snelgrove P, Strayer D, Weslawski JM (2001) The function of marine critical transition zones and the importance of sediment biodiversity. Ecosystems 4:430–451

    Article  CAS  Google Scholar 

  • Lutjeharms JRE (2006) The ocean environment off southeastern Africa: a review. S Afr J Sci 102(9–10):419–426

    Google Scholar 

  • Mackey AP, Smail G (1995) Spatial and temporal variation in litter fall of Avicennia-marina (Forssk) Vierh in the Brisbane-River, Queensland, Australia. Aquat Bot 52(1–2):133–142

    Article  Google Scholar 

  • McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance based redundancy analysis. Ecology 82:290–297

    Article  Google Scholar 

  • McClanahan TR (1988) Seasonality in east Africa’s coastal waters. Mar Ecol Prog Ser 44(2):191–199

    Article  Google Scholar 

  • McKee KL, Faulkner PL (2000) Restoration of biogeochemical function in mangrove forests. Restor Ecol 8(3):247–259

    Article  Google Scholar 

  • McLachlan A (1977a) Studies on the psammolittoral meiofauna of Algoa Bay. II. The distribution, composition and biomass of the meiofauna and macrofauna. Zool Afr 12(1):33–60

    Google Scholar 

  • McLachlan A (1977b) Composition, distribution, abundance and biomass of the macrofauna and meiofauna of four sandy beaches. Zool Afr 12(2):279–306

    Google Scholar 

  • McLachlan A, Dorvlo A (2005) Global patterns in sandy beach macrobenthic communities. J Coast Res 21(4):674–687

    Article  Google Scholar 

  • McLachlan A, Dorvlo A (2007) Species–area relationships for sandy beach macrobenthos in the context of intertidal width. Oceanologia 49(1):91–98

    Google Scholar 

  • McLachlan A, Jaramillo E (1995) Zonation on sandy beaches. Oceanogr Mar Biol 33:305–335

    Google Scholar 

  • McLachlan A, Erasmus T, Furstenberg JP (1977) Migrations of sandy beach meiofauna. Zool Afr 12(2):257–277

    Google Scholar 

  • McLachlan A, Wooldridge T, Dye AH (1981) The ecology of sandy beaches in Southern-Africa. S Afr J Zool 16(4):219–231

    Google Scholar 

  • McLachlan A, de Ruyck A, Hacking N (1996) Community structure on sandy beaches: patterns of richness and zonation in relation to tide range and latitude. Rev Chil Hist Nat 69:451–467

    Google Scholar 

  • Monthum Y, Aryuthaka C (2006) Spatial distribution of meiobenthic community in the Tha Len seagrass bed, Krabi Province, Thailand. Coast Mar Sci 30(1):146–153

    Google Scholar 

  • Moore HB (1972) Aspects of stress in the tropical marine environment. Adv Mar Biol 10:217–269

    Article  Google Scholar 

  • Moreno M, Granelli V, Albertelli G, Fabiano M (2005) Meiofaunal distribution in microtidal mixed beaches of the Ligurian Sea (NW Mediterranean). Meiofauna Mar 14:131–137

    Google Scholar 

  • Moreno M, Ferrero TJ, Granelli V, Marin V, Albertelli G, Fabiano M (2006) Across shore variability and trophodynamic features of meiofauna in a microtidal beach of the NW Mediterranean. Estuar Coast Shelf Sci 66(3–4):357–367

    Article  Google Scholar 

  • Moreno M, Ferrero TJ, Gallizia I, Vezzulli L, Albertelli G, Fabiano M (2008) An assessment of the spatial heterogeneity of environmental disturbance within an enclosed harbour through the analysis of meiofauna and nematode assemblages. Estuar Coast Shelf Sci 77(4):565–576

    Article  Google Scholar 

  • Nagelkerken I, Blaber SJM, Bouillon S, Green P, Haywood M, Kirton LG, Meynecke JO, Pawlik J, Penrose HM, Sasekumar A, Somerfield PJ (2008) The habitat function of mangroves for terrestrial and marine fauna: a review. Aquat Bot 89(2):155–185

    Article  Google Scholar 

  • Ndaro SGM, Sjoling S, Olafsson E (1995) Small-scale variation in major meiofaunal taxa and sediment chemistry in tropical sediments. Ambio 24(7–8):470–474

    Google Scholar 

  • Netto SA, Gallucci F (2003) Meiofauna and macrofauna communities in a mangrove from the Island of Santa Catarina, South Brazil. Hydrobiologia 505(1–3):159–170

    Article  Google Scholar 

  • Nicholas WL (2001) Seasonal variations in nematode assemblages on an Australian ocean beach; the effect of heavy seas and unusually high tides. Hydrobiologia 464:17–26

    Article  Google Scholar 

  • Nybakken JW (1997) Marine Biology. An ecological approach, 4th edn. Addison-Wesley Educational Publications Inc, Reading

    Google Scholar 

  • Olafsson E (1995) Meiobenthos in mangrove areas in eastern Africa with emphasis on assemblage structure of free-living marine nematodes. Hydrobiologia 312(1):47–57

    Article  Google Scholar 

  • Olafsson E, Carlstrom S, Ndaro SGM (2000) Meiobenthos of hypersaline tropical mangrove sediment in relation to spring tide inundation. Hydrobiologia 426(1–3):57–64

    Article  Google Scholar 

  • Olafsson E, Buchmayer S, Skov MW (2002) The East African decapod crab Neosarmatium meinerti (de Man) sweeps mangrove floors clean of leaf litter. Ambio 31(7–8):569–573

    PubMed  Google Scholar 

  • Pattnaik A, Rao L (1990) Composition and distribution of interstitial meiofauna of the sandy beach at Gopalpur, south Orissa coast. Indian J Mar Sci 19:165–170

    Google Scholar 

  • Paula J, Costa PFE, Martins A, Gove D (2001) Patterns of abundance of seagrasses and associated infaunal communities at Inhaca Island, Mozambique. Estuar Coast Shelf Sci 53(3):307–318

    Article  CAS  Google Scholar 

  • Pinto TKDO, Santos PJPD (2006) Meiofauna community structure variability in a Brazilian tropical sandy beach. Atlântica 28(2):117–127

    Google Scholar 

  • Platt HM, Warwick RM (1988) Free-living marine nematodes. Part II. British Chromadorida. Synopses of the British Fauna no. 38. Brill, Leiden

  • Quartly GD, Srokosz MA (2003) Satellite observations of the Agulhas Current system. Philos Trans R Soc A 361(1802):51–56

    Article  Google Scholar 

  • Renaud-Mornant J, Gourbault N (1984) First meiofaunistic survey of Guadeloupe. Hydrobiologia 118(1):113–118

    Google Scholar 

  • Roberts MJ, Ribbink AJ, Morris T, van den Berg MA, Engelbrecht DC, Harding RT (2006) Oceanographic environment of the Sodwana Bay coelacanths (Latimeria chalumnae), South Africa. S Afr J Sci 102:435–443

    Google Scholar 

  • Rodriguez JG, Lopez J, Jaramillo E (2001) Community structure of the intertidal meiofauna along a gradient of morphodynamic sandy beach types in southern Chile. Rev Chil Hist Nat 74(4):885–897

    Article  Google Scholar 

  • Sasekumar A (1994) Meiofauna of a mangrove shore on the West-Coast of Peninsular Malaysia. Raffles B Zool 42(4):901–915

    Google Scholar 

  • Schlacher TA, Schoeman DS, Dugan J, Lastra M, Jones A, Scapini F, McLachlan A (2008) Sandy beach ecosystems: key features, sampling issues, management, challenges and climate change impacts. Mar Ecol Evol Perspect 29(Suppl 1):70–90

    Google Scholar 

  • Schrijvers J, Okondo J, Steyaert M, Vincx M (1995) Influence of epibenthos on meiobenthos of the Ceriops tagal mangrove sediment at Gazi Bay Kenya. Mar Ecol Prog Ser 128:247–259

    Article  Google Scholar 

  • Sheridan P (1997) Benthos of adjacent mangrove, seagrass and non-vegetated habitats in Rookery Bay, Florida, USA. Estuar Coast Shelf Sci 44(4):455–469

    Article  Google Scholar 

  • Siebert T, Branch GM (2007) Influences of biological interactions on community structure within seagrass beds and sandprawn-dominated sandflats. J Exp Mar Biol Ecol 340(1):11–24

    Article  Google Scholar 

  • Soares G (2003) Sandy beach morphodynamics and macrobenthic communities in temperate, subtropical and tropical regions—a macroecological approach. Dissertation, University of Port Elizabeth, South Africa

  • Soetaert K, Vincx M, Wittoeck J, Tulkens M (1995) Meiobenthic distribution and nematode community structure in 5 European estuaries. Hydrobiologia 311(1–3):185–206

    Article  Google Scholar 

  • Somerfield PJ, Gee JM, Aryuthaka C (1998) Meiofaunal communities in a Malaysian mangrove forest. J Mar Biol Assoc UK 78(3):717–732

    Article  Google Scholar 

  • Steyaert M, Herman PMJ, Moens T, Widdows J, Vincx M (2001) Tidal migration of nematodes on an estuarine tidal flat (the Molenplaat, Schelde Estuary, SW Netherlands). Mar Ecol Prog Ser 224:299–304

    Article  Google Scholar 

  • Urban-Malinga B, Kotwicki L, Gheskiere TLA, Jankowska K, Opalinski K, Malinga M (2004) Composition and distribution of meiofauna, including nematode genera, in two contrasting Arctic beaches. Polar Biol 27:447–457

    Article  Google Scholar 

  • Vanaverbeke J, Vincx M (2008) Short-term changes in nematode communities from an abandoned intense sand extraction site on the Kwintebank (Belgian Continental Shelf) two years post-cessation. Mar Environ Res 66(2):240–248

    Article  PubMed  CAS  Google Scholar 

  • Vanhove S, Vincx M, Vangansbeke D, Gijselinck W, Schram D (1992) The meiobenthos of 5 mangrove vegetation types in Gazi Bay, Kenya. Hydrobiologia 247(1–3):99–108

    Article  Google Scholar 

  • Warwick RM, Clarke KR (1993) Increased variability as a symptom of stress in marine communities. J Exp Mar Biol Ecol 172(1–2):215–226

    Article  Google Scholar 

  • Wells S, Ngusaru A (2004) WWF Eastern African marine ecoregion. Towards the establishment of an ecologically representative network of marine protected areas in Kenya, Tanzania and Mozambique. WWF, Dar es Salaam. http://eame.wiomsa.org/pubs/EAME-MPA-Network.pdf. Accessed 19 Feb 2008

  • Wieser W (1959) The effect of grain size on the distribution of small invertebrates inhabiting the beaches of Puget Sound. Limnol Oceanogr 4:181–194

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to the EC under the Sixth Framework programme, Specific Measures in Support of International Co-operation (INCO-DEV)PRIORITY A2.2. Reconciling multiple demands on coastal zones, for funding the sampling, meiofaunal extraction and identification for this study. It forms part of the larger EC TRANSMAP project (http://www.transmap.fc.ul.pt/), Transboundary networks of marine protected areas for integrated conservation and sustainable development: biophysical, socio-economic and governance assessment in East Africa (Contract no.: PL 510862), co-ordinated by José Pavão Mendes de Paula of the Fundação da Universidade de Lisboa. We would like to thank Ricardo Nogueira Mendes from the Faculdade de Ciências da Universidade de Lisboa for his help with the Fig. 1. NB and TJF would also like to thank Dr Gordon Paterson, NHM, for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalie Barnes.

 

 

Appendix 1 Environmental data across regions
Appendix 2 Environmental data across beach transects
Appendix 3 Environmental data across beach samples
Appendix 4 Environmental data across mangrove and seagrass transects
Appendix 5 Environmental data across mangrove and seagrass stations

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnes, N., Bamber, R.N., Bennell, G. et al. Assessment of regional and local biodiversity in tropical and subtropical coastal habitats in the East African Marine Ecoregion. Biodivers Conserv 20, 2075–2109 (2011). https://doi.org/10.1007/s10531-011-0076-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-011-0076-2

Keywords

Navigation