Skip to main content

Advertisement

Log in

Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Mountain forests deserve special attention from ecologists and conservation biologists given the ecosystem services they provide to society, and their threat under global change. In the subalpine region of the Andes, Polylepis woodlands occur as arboreal islands in a matrix of grassland and scrub. Due to overgrazing and burning, however, these woodland patches are believed to cover only 11% of their potential area in Bolivia, core area for Polylepis. We reviewed the knowledge on the species diversity for the Bolivian Polylepis woodland remnants, assessed the conservation status of the occurring species, determined their trophic niche, and related species richness with climatic variables and elevation. Based in 31 publications, we found 780 identified species occurring in Polylepis woodlands: 425 plants, 266 birds, 46 mammals, 35 butterflies and 8 reptiles. Ten of the 13 Bolivian Polylepis species, as well as 7 other plant species, 14 bird species and 4 mammal species were categorized as threatened or near threatened according to IUCN criteria. In general, plant species richness increased with increased precipitation and length of the growth season, while it decreased with increasing elevation. There was a positive relationship between bird species richness, precipitation and length of the growth season. The highest bird endemism in Polylepis woodland remnants occurred at intermediate elevations, temperatures and precipitation. Mammal species richness decreased with increasing maximum temperature. Finally, we discuss the most important knowledge gaps regarding biodiversity in Bolivian Polylepis woodland remnants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguayo R, Rey G, Ruiz O (2007) Anfibios y reptiles. In: Aguirre LF, Aguayo R, Ruiz O et al (eds) Guía de los mamíferos, anfibios y reptiles del Parque Nacional Tunari, Centro de Biodiversidad y Genética. UMSS, Cochabamba

    Google Scholar 

  • Aguirre LF, Aguayo R, Ruiz O et al (eds) (2007) Guía de los mamíferos, anfibios y reptiles del Parque Nacional Tunari. Centro de Biodiversidad y Genética. UMSS, Cochabamba

    Google Scholar 

  • Andersen PN, Hjarsen T, Williams NM (1999) Monitoring and management of high Andean biodiversity—a study from Cochabamba, Bolivia. Centre for Research on the Cultural and Biological Diversity of Andean Rainforests (DIVA), DIVA Technical Report no 6, Rønde

  • Arteta M, Corrales M, Dávalos C et al (2006) Vascular plants from the bay of Juli, Titicaca Lake, Puno-Perú. Ecol Appl 5:29–36

    Google Scholar 

  • Azócar A, Rada F, García-Núñez C (2007) Functional characteristics of the arborescent genus Polylepis along a latitudinal gradient in the high Andes. Interciencia 32:663–668

    Google Scholar 

  • Balderrama JA (2006) Diversity, endemism and conservation issues of the avifauna of Tunari National Park (Cochabamba, Bolivia). Ecología en Bolivia 41:149–170

    Google Scholar 

  • Balderrama JA, Ramirez MC (2001) Bird diversity and endemism in two fragments of Polylepis besseri forests in Tunari National Park (Cochabamba, Bolivia). Rev Biol Ecol 9:45–60

    Google Scholar 

  • Begon M, Harper JL, Townsend CR (1996) Ecology: individuals, populations and communities. Blackwell Science, Oxford

    Google Scholar 

  • Beniston M (2003) Climatic change in mountain regions: a review of possible impacts. Clim Change 59:5–31

    Article  Google Scholar 

  • Burgess ND, Butynski TM, Cordeiro NJ et al (2007) The biological importance of the Eastern Arc Mountains of Tanzania and Kenya. Biol Conserv 134:209–231. doi:10.1016/j.biocon.2006.08.015

    Article  Google Scholar 

  • Buytaert W, Celleri R, De Bievre B et al (2006) Human impact on the hydrology of the Andean paramos. Earth-Sci Rev 79:53–72. doi:10.1016/j.jhydrol.2006.02.031

    Article  Google Scholar 

  • Cierjacks A, Ruhr NK, Wesche K et al (2008a) Effects of altitude and livestock on the regeneration of two tree line forming Polylepis species in Ecuador. Plant Ecol 194:207–221. doi:10.1007/s11258-007-9285-x

    Article  Google Scholar 

  • Cierjacks A, Salgado S, Wesche K et al (2008b) Post-fire population dynamics of two tree species in high-altitude Polylepis forests of central Ecuador. Biotropica 40:176–182. doi:10.1111/j.1744-7429.2007.00361.x

    Article  Google Scholar 

  • Clinebell RR, Phillips OL, Gentry AH et al (1995) Prediction of Neotropical tree and liana species richness from soil and climatic data. Biodiv Conserv 4:56–90. doi:10.1007/BF00115314

    Article  Google Scholar 

  • Connell JH (1978) Diversity in tropical rain forests and coral reefs—high diversity of trees and corals is maintained only in a non-equilibrium state. Science 199:1302–1310. doi:10.1126/science.199.4335.1302

    Article  CAS  PubMed  Google Scholar 

  • Cortes A, Rosenmann M, Bozinovic F (2000) Relación costo-beneficio en la termorregulación de Chinchilla lanigera. Rev Chil Hist Nat 73:351–357

    Google Scholar 

  • Douglas I (1999) Hydrological investigations of forest disturbance and land cover impacts in South-East Asia: a review. Philos T Roy Soc B 354:1725–1738

    Article  CAS  Google Scholar 

  • Ellenberg H (1958) Wald ooder Steppe? Die natürliche Pflanzendecke der Anden Perus. Umschau 1958:645–681

    Google Scholar 

  • Fernández M, Mercado M, Arrázola S et al (2001) Structure and floral composition of one forest fragment of Polylepis besseri Hieron. subsp. besseri in Sacha Loma (Cochabamba). Rev Biol Ecol 9:15–27

    Google Scholar 

  • Fernández-Terrazas E (1997) Estudio fitosociológico de los bosques de Kewiña (Polylepis spp. Rosaceae) en la Cordillera de Cochabamba. Rev Biol Ecol 2:49–65

    Google Scholar 

  • Fjeldså J (1992) Biogeographic patterns and evolution of the avifauna of relict high-altitude woodlands of the Andes. Steenstrupia 18:9–62

    Google Scholar 

  • Fjeldså J (1993) The avifauna of the Polylepis woodlands of the Andean highlands: The efficiency of basing conservation priorities on patterns of endemism. Bird Conserv Int 3:37–55

    Article  Google Scholar 

  • Fjeldså J (2002) Key areas for conserving the avifauna of Polylepis forests. Ecotropica 8:125–131

    Google Scholar 

  • Fjeldså J, Irestedt M (2009) Diversification of the South American avifauna: Patterns and implications for conservation in the Andes. Ann Missouri Bot Gard 96:398–409. doi:10.3417/2007148

    Article  Google Scholar 

  • Fjeldså J, Kessler M (1996) Conserving the Biological Diversity of Polylepis Woodlands of the Highland of Peru and Bolivia. A contribution to Sustainable Natural Resource Management in the Andes. Centre for Research on the Cultural and Biological Diversity of Andean Rainforest (DIVA). DIVA Technical Report 11. NORDECO, Copenhagen

  • Fjeldså J, Lambin E, Mertens B (1999) Correlation between endemism and local ecoclimatic stability documented by comparing Andean bird distributions and remotely sensed land surface data. Ecography 22:63–78

    Article  Google Scholar 

  • Funk VA, Robinson H, McKee GS et al (2005) Neotropical montane Compositae with an emphasis on the Andes. In: Churchill SP, Balslev H, Forero E et al (eds) Biodiversity and conservation of neotropical montane forests: Proceedings of the neotropical montane forest biodiversity and conservation symposium. The New York Botanical Garden, Ney York., pp 451–472

    Google Scholar 

  • García C, Renison D, Cingolani AM et al (2008) Avifaunal changes as a consequence of large-scale livestock exclusion in the mountains of Central Argentina. J Appl Ecol 45:351–360. doi:10.1111/j.1365-2664.2007.01388.x

    Article  Google Scholar 

  • Gentry AH (1995) Patterns of diversity and floristic composition in neotropical montane forests. In: Churchill SP, Balslev H, Forero E et al (eds) Biodiversity and conservation of neotropical montane forests. The New York Botanical Garden, Bronx

    Google Scholar 

  • Ghalambor CK, Huey RB, Martin PR et al (2006) Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr Comp Biol 46:5–17. doi:10.1093/icb/icj003

    Article  Google Scholar 

  • Goldstein G, Meinzer FC, Rada F (1994) Environmental biology of a tropical treeline species, Polylepis sericea. In: Rundel PW, Smith AP, Meinzer FC (eds) Tropical Alpine environments: plant form and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Grieser J, Gommes R, Bernardi M (2006) New LocClim—the local climate estimator of FAO. Geophysical Research Abstracts 8:08305

    Google Scholar 

  • Hawkins BA, Field R, Cornell HV et al (2003) Energy, water, and broad-scale geographic patterns of species richness. Ecology 84:3105–3117

    Article  Google Scholar 

  • Hensen I (2002) Impacts of anthropogenic activity on the vegetation of Polylepis woodlands in the region of Cochabamba, Bolivia. Ecotropica 8:183–203

    Google Scholar 

  • Herzog T (1923) Die Pflanzenwelt der bolivianischen Anden und ihres östlichen Vorlandes. Die vegetation der Erde 15

  • Herzog SK, Cahill J, Fjeldså J et al (2002) Ecology and conservation of High-Andean Polylepis forests. Ecotropica 8:93–95

    Google Scholar 

  • Herzog SK, Soria AR, Matthysen E (2003) Seasonal variation in avian community composition in a high-andean Polylepis (Rosaceae) forest fragment. Wilson Bull 115:438–447

    Article  Google Scholar 

  • Herzog SK, Kessler M, Bach K (2005) The elevational gradient in Andean bird species richness at the local scale: a foothill peak and a high-elevation plateau. Ecography 28:209–222

    Article  Google Scholar 

  • IUCN (2008) 2008 Red list of threatened species. http://www.iucnredlist.org. Cited 17 Mar 2009

  • Jácome J, Kessler M, Smith AR (2007) A human-induced downward-skewed elevational abundance distribution of pteridophytes in the Bolivian Andes. Global Ecol Biogeogr 16:313–318. doi:10.1111/j.1466-8238.2007.00291.x

    Article  Google Scholar 

  • Kessler M (1995) Present and potential distribution of Polylepis (Rosaceae) forests in Bolivia. In: Churchill SP, Balslev H, Forero E et al (eds) Biodiversity and conservation of neotropical montane forests: Proceedings of the neotropical montane forest biodiversity and conservation symposium. The New York Botanical Garden, New York., pp 281–294

    Google Scholar 

  • Kessler M (2002) The “Polylepis problem”: Where do we stand? Ecotropica 8:97–110

    Google Scholar 

  • Kessler M (2006) Bosques de Polylepis. In: Moraes M, Ollgaard B, Kvist LP et al (eds) Botánica económica de los Andes Centrales. Universidad Mayor de San Andrés, La Paz

    Google Scholar 

  • Kessler M, Herzog SK (1998) Conservation status in Bolivia of timberline habitats, elfin forest and their birds. Cotinga 10:50–54

    Google Scholar 

  • Kessler M, Schmidt-Lebuhn AN (2006) Taxonomical and distributional notes on Polylepis (Rosaceae). Org Divers Ecol 6:67–69. doi:10.1016/j.ode.2005.04.001

    Article  Google Scholar 

  • Kessler M, Herzog SK, Fjeldså J, Bach K (2001) Species richness and endemism of plant and bird communities along two gradients of elevation, humidity and land use in the Bolivian Andes. Divers Distrib 7:61–77. doi:10.1046/j1472-4642.2001.00097.x

    Article  Google Scholar 

  • Kräuchi N, Brang P, Schonenberger W (2000) Forests of mountainous regions: gaps in knowledge and research needs. For Ecol Manag 132:73–82

    Article  Google Scholar 

  • Larrea-Alcázar D, López RP (2005) An estimation of the floristic richness of Bolivia’s Andean dry valleys. Biodiv Conserv 14:1923–1927. doi:10.1007/s10531-004-2122-9

    Article  Google Scholar 

  • Lomolino MV (2001) Elevation gradients of species-density: historical and prospective views. Global Ecol Biogeogr 10:3–13

    Article  Google Scholar 

  • Macía MJ, Palm ME, Martin MP (2005) A new species of Leptosphaeria (Ascomycotina, Pleosporales) on Rosaceae from Bolivia. Mycotaxon 93:401–406

    Google Scholar 

  • Marcora P, Hensen I, Renison D et al (2008) The performance of Polylepis australis trees along their entire altitudinal range: implications of climate change for their conservation. Divers Distrib 14:630–636. doi:10.1111/j.1472-4642.2007.00455.x

    Article  Google Scholar 

  • Menegon M, Doggart N, Owen N (2008) The Nguru mountains of Tanzania, an outstanding hotspot of herpetofaunal diversity. Acta Herpetol 3:107–127

    Google Scholar 

  • Meneses RI, Beck SG (2005) Especies amenazadas de la flora de Bolivia. Herbario Nacional de Bolivia, La Paz

    Google Scholar 

  • Mercado-Ustariz M (1998) Vegetation of the ceja de monte in the Yungas of the Carrasco National Park (Cochabamba, Bolivia). Rev Biol Ecol 4:55–75

    Google Scholar 

  • Ministerio de Medio Ambiente y Agua (2009) Libro rojo de la fauna silvestre de vertebrados de Bolivia. Ministerio de Medio Ambiente y Agua, La Paz

  • Molles MC Jr (2002) Ecology: concepts and applications. Mc Graw Hill, New York

    Google Scholar 

  • Moraes M, Sarmiento J, Oviedo E (1995) Richness and uses in a diverse palm site in Bolivia. Biodiv Conserv 4:719–727

    Article  Google Scholar 

  • Mueller R, Beck SG, Lara R (2002) Potential vegetation based on climate-data in the Bolivian Yungas-forests. Ecología en Bolivia 37:5–14

    Google Scholar 

  • Navarro G (2001) Contribución al conocimiento fitosociológico de la vegetación de epífitos vasculares del centro sur de Bolivia. Rev Biol Ecol 10:59–79

    Google Scholar 

  • Navarro G, Maldonado M (2002) Geografía ecológica de Boliva: Vegetación y ambientes acuáticos. Centro de Ecología Difusión Simón I. Patiño, Santa Cruz

    Google Scholar 

  • Navarro G, Molina JA, De la Barra N (2005) Classification of the high-Andean Polylepis forests in Bolivia. Plant Ecol 176:113–130

    Article  Google Scholar 

  • Purcell J, Brelsford A (2004) Reassessing the causes of decline of Polylepis, a tropical subalpine forest. Ecotropica 10:155–158

    Google Scholar 

  • Quinteros R, Paz-Soldán L, Pinto CF et al (2006) Influece of human activities on butterfly communities of Polylepis besseri forests of Cochabamba—Bolivia. Rev Biol Ecol 20:43–64

    Google Scholar 

  • Rahbek C (1995) The elevational gradient of species richness—a uniform pattern? Ecography 18:200–205

    Google Scholar 

  • Rahbek C, Gotelli NJ, Colwell RK et al (2007) Predicting continental-scale patterns of bird species richness with spatially explicit models. P Roy Soc B 274:165–174. doi:10.1098/rspb.2006.3700

    Article  Google Scholar 

  • Remsen JV Jr (1994) Use and misuse of bird lists in community ecology and conservation. Auk 111:225–227

    Google Scholar 

  • Renison D, Cingolani AM, Suarez R (2002) Effects of fire on a Polylepis australis (Rosaceae) woodland in the mountains of Cordoba, Argentina. Rev Chil Hist Nat 75:719–727

    Article  Google Scholar 

  • Renison D, Hensen I, Cingolani AM (2004) Anthropogenic soil degradation affects seed viability in Polylepis australis mountain forests of central Argentina. For Ecol Manag 196:327–333. doi:10.1016/j.foreco.2004.03.025

    Article  Google Scholar 

  • Sarmiento G (1986) Ecological features of climate in high tropical mountains. In: Vuilleumier F, Monasterio M (eds) High altitude tropical biogeography. Oxford University Press, New York

    Google Scholar 

  • Schmidt-Lebuhn AN, Kessler M, Kumar M (2006) Promiscuity in the Andes: species relationships in Polylepis (Rosaceae, Sanguisorbeae) based on AFLP and morphology. Syst Bot 31:547–559

    Article  Google Scholar 

  • Schroter D, Cramer W, Leemans R et al (2005) Ecosystem service supply and vulnerability to global change in Europe. Science 310:1333–1337. doi:10.1126/science.1115233

    Article  PubMed  Google Scholar 

  • Sidle RC, Ziegler AD, Negishi JN et al (2006) Erosion processes in steep terrain—truths, myths, and uncertainties related to forest management in Southeast Asia. For Ecol Manag 224:199–225. doi:10.1016/j.foreco.2005.12.019

    Article  Google Scholar 

  • Simpson BB (1979) A revision of the genus Polylepis (Rosaceae: Sanguisorbeae). Smithsonian Contributions to Botany 43:1–62

    Google Scholar 

  • Simpson BB (1986) Speciation and specialization of Polylepis in the Andes. In: Vuillemier F, Monasterio M (eds) High altitude tropical biogeography, New York

  • Smiet AC (1992) Forest ecology on Java—human impact and vegetation of montane forest. J Trop Ecol 8:129–152

    Article  Google Scholar 

  • Smit A (1978) Pollen morphology of Polylepis boyacensis Cuatrecasas, Acaena cylindristachya Ruiz et Pavon and Acaena elongata L (Rosaceae) and its application to fossil material. Rev Palaeobot Palyno 25:393–398

    Article  Google Scholar 

  • StatSoft I (2001) STATISTICA (data analysis software system), version 6. www.statsoft.com

  • Tarifa T, Yensen E (2001) Mammals of Bolivian Polylepis woodlands. Rev Bol Ecol 9:29–44

    Google Scholar 

  • Teich I, Cingolani AM, Renison D et al (2005) Do domestic herbivores retard Polylepis australis Bitt. woodland recovery in the mountains of Cordoba, Argentina? For Ecol Manag 219:229–241. doi:10.1016/j.foreco.2005.08.048

    Article  Google Scholar 

  • Torres RC, Renison D, Hensen I et al (2008) Polylepis australis’ regeneration niche in relation to seed dispersal, site characteristics and livestock density. For Ecol Manag 254:255–260. doi:10.1016/j.foreco.2007.08.007

    Article  Google Scholar 

  • Troll C (1929) Die Cordillera Real. Zt Ges f Erdkunde Berlin 7/8:279–312

    Google Scholar 

  • Vuilleumier F, Monasterio M (1986) High altitude tropical biogeography. Oxford University Press, New York

    Google Scholar 

  • Williams JW, Jackson ST, Kutzbacht JE (2007) Projected distributions of novel and disappearing climates by 2100 AD. P Natl Acad Sci USA 104:5738–5742. doi:10.1073/pnas.0606292104

    Article  CAS  Google Scholar 

  • Yensen E, Tarifa T (2002) Mammals of bolivian Polylepis woodlands: guild structure and diversity patterns in the world’s highest woodlands. Ecotropica 8:145–162

    Google Scholar 

Download references

Acknowledgements

We thank all the researchers who have worked in the Bolivian Polylepis woodlands. E. Gareca thanks the staff of the Centro de Biodiversidad y Genética for their help and support. Gonzalo Navarro checked the biogeographic province column of Table 1. Christa De Troeyer helped in the plant data base construction. Modesto Zárate checked the plant species list and helped with data of growth form of plants for Appendix 1 in Supplementary Material. José Antonio Balderrama helped with the data of trophic niche for birds in Appendix 2 in Supplementary Material. Teresa Tarifa made valuable observations and comments for the mammals in Appendix 2 in Supplementary Material. One anonymous reviewer improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edgar E. Gareca.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gareca, E.E., Hermy, M., Fjeldså, J. et al. Polylepis woodland remnants as biodiversity islands in the Bolivian high Andes. Biodivers Conserv 19, 3327–3346 (2010). https://doi.org/10.1007/s10531-010-9895-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-010-9895-9

Keywords

Navigation