Skip to main content

Advertisement

Log in

Gold coral (Savalia savaglia) and gorgonian forests enhance benthic biodiversity and ecosystem functioning in the mesophotic zone

  • original paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The twilight or mesophotic zone is amongst the less explored marine regions. In coastal areas, investigations and manipulative experiments on benthic biodiversity and ecosystem functioning at depths up to >50 m have been recently made possible by the progress of SCUBA techniques. In this study, we tested the effects of the presence of a gorgonian forest characterised by a large and dense population of the gold coral Savalia savaglia (Bertoloni 1819) on the benthic biodiversity (nematode species richness, and meiofauna community structure and richness of taxa), trophic guilds state (molluscs) and ecosystem functioning in the surrounding sediments. The S. savaglia colonies create elevated and complex tertiary structures. Our results indicate that the presence of these colonies was associated with a significantly increased deposition of bioavailable substrates and enhanced biodiversity, when compared with soft bottoms at the same depth but without gold corals. The higher biodiversity and altered trophic conditions resulted in higher rates of ecosystem functioning (e.g., higher benthic biomasses). These results suggest that S. savaglia should be particularly protected not only for its specific rarity, endemism and vulnerability but also because it has a prominent role in sustaining high levels of biodiversity and ecosystem functioning in the surrounding benthos of the twilight zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen LH, Lemon E, Muller L (1972) Environment of a Costa Rican forest. Ecology 53:102–111

    Article  Google Scholar 

  • Anderson MJ (2003) DISTLM forward a FORTRAN computer program to calculate a distance-based multivariate analysis for a linear model using forward selection. Department of Statistics, University of Auckland, New Zealand

    Google Scholar 

  • Astraldi M, Manzella G (1983) Some observations on current measurements on the East Ligurian Shelf, Mediterranean Sea. Cont Shelf Res 2:183–193

    Article  Google Scholar 

  • Ávila SP, Malaquias MAE (2003) Biogeographical relationships of the molluscan fauna of the Ormonde Seamount (Gorringe Bank, Northeast Atlantic Ocean). J Mol Stud 69:145–150

    Article  Google Scholar 

  • Ávila SP, Cardigos F, Santos RS (2007) Comparison of the community structure of the marine mollusc of the “Banco D. João de Castro” seamount (Azores, Portugal) with that of typical inshore habitats on the Azores archipelago. Helgol Mar Res 61:43–53

    Article  Google Scholar 

  • Bavestrello G, Cattaneo-Vietti R, Danovaro R, Fabiano M (1991) Detritus rolling down a vertical cliff of the Ligurian Sea (Italy): the ecological role in hard bottom communities. P.S.Z.N.I. Mar Ecol 12:281–292

    Article  Google Scholar 

  • Bavestrello G, Cattaneo-Vietti R, Cerrano C et al (1995) Annual sedimentation rates and role of the resuspension processes along a vertical cliff (Ligurian Sea, Italy). J Coast Res 11:690–696

    Google Scholar 

  • Beaulieu SE (2001) Life on glass houses: sponge stalk communities in the deep sea. Mar Biol 138:803–817

    Article  Google Scholar 

  • Bell FJ (1891) Contributions of our knowledge of Antipatharian corals. Trans Zool Soc Lond 13:141–142

    Google Scholar 

  • Bouchet P, Warén A (1986) Revision of the Northeast Atlantic bathyal and abyssal Aclididae, Eulimidae, Epitonidae (Mollusca, Gastropoda). Boll Mal, Suppl 2:297–576

    Google Scholar 

  • Bruno JF, Bertness MD (2001) Habitat modification and facilitation in benthic marine communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, Sunderland, pp 201–218

    Google Scholar 

  • Bruno JF, Kennedy CW (2000) Patch-size dependent habitat modification and facilitation on New England cobble beaches by Spartina alterniflora. Oecologia 122:98–108

    Article  Google Scholar 

  • Buesseler KO, Lambor CH, Boyd PW et al (2007) Revisiting carbon flux through the ocean’s twilight zone. Science 316:567–570

    Article  CAS  PubMed  Google Scholar 

  • Byers JE, Cuddington K, Jones CG et al (2006) Using ecosystem engineers to restore ecological systems. Trends Ecol Evol 21:493–500

    Article  PubMed  Google Scholar 

  • Cerrano C, Calcinai B, Bertolino M et al (2006) Epibionts of the scallop Adamussium colbecki in the Ross Sea, Antarctica. Chem Ecol 22:235–244

    Article  Google Scholar 

  • Clarke KR (1993) Non parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Danovaro R, Pusceddu A, Covazzi Harriague A et al (1999) Community experiments using benthic chambers: microbial significance in highly organic enriched sediments. Chem Ecol 16:7–30

    Article  CAS  Google Scholar 

  • Danovaro R, Gambi C, Dell’Anno A et al (2008) Exponential decline of deep-sea ecosystem functioning linked to benthic biodiversity loss. Curr Biol 18:1–8

    Article  CAS  PubMed  Google Scholar 

  • Davies DJ, Powell EN, Stanton RJ Jr (1989) Taphonomic signature as a function of environment process: shells and shell beds in a hurricane-influenced inlet on the Texas coast. Palaeogeo, Palaeoclim, Palaeoecol 72:317–356

    Article  Google Scholar 

  • Dayton PK (1972) Toward an understanding of community resilience and the potential effects of enrichments to the benthos at McMurdo Sound, Anarctica. Proc Coll Conserv Probl Antarctica 81–96

  • de Boer WF (2007) Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: a review. Hydrobiologia 591:5–24

    Article  CAS  Google Scholar 

  • Dell’Anno A, Pusceddu A, Langone L, Danovaro R (2008) Early diagenesis of organic matter in coastal sediments influenced by riverine inputs. Chem Ecol 24:75–85

    Article  CAS  Google Scholar 

  • Druffel ERM, Griffin S, Witter A et al (1995) Gerardia: bristlecone pine of the deep-sea? Geochim Cosmochim Acta 23:5031–5036

    Article  Google Scholar 

  • Eckman JE, Nowell ARM, Jumars PA (1981) Sediment destabilization by animal tubes. J Mar Res 39:365–374

    Google Scholar 

  • Freiwald A, Roberts JM (2005) Cold-water corals and ecosystems. Springer-Verlag, Berlin, 1243 pp, Printed in The Netherlands

  • Gacia E, Duarte CM (2001) Sediment retention by a Mediterranean Posidonia oceanica meadow: the balance between deposition and resuspension. Est Coast Shelf Sci 52:505–514

    Article  Google Scholar 

  • Gambi MC, Nowell ARM, Jumars PJ (1990) Flume observations on flow density dynamics in Zostera marina (eelgrass) beds. Mar Ecol Prog Ser 61:159–169

    Article  Google Scholar 

  • Gaylord B, Rosman JH, Reed DC et al (2007) Spatial patterns of flow and their modification within and around a giant kelp forest. Limnol Oceanogr 52:1838–1852

    Google Scholar 

  • Giribet G, Peñas A (1997) Malacological marine fauna from Garraf coast (NE Iberian Peninsula). Iberus 15:41–93

    Google Scholar 

  • Gofas S (2007) Rissoidae (Mollusca: Gastropoda) from northeast Atlantic seamounts. J Nat Hist 41:779–885

    Article  Google Scholar 

  • Gooday AJ, Bett BJ, Pratt DN (1993) Direct observation of episodic growth in an abyssal xenophyophore (Protista). Deep-Sea Res I 40:2131–2143

    Article  Google Scholar 

  • Grigg RW (2002) Precious corals in Hawaii: discovery of a new bed and revised management measures for existing beds. Mar Fish Rev 64:13–20

    Google Scholar 

  • Häussermann V (2003) Ordnung Zoantharia (=Zoanthiniaria, Zoanthidae) (Krustenanemonen). In: Hofrichter R (Hrsg), Das Mittelmeer, Fauna, Flora, Ökologie, Band II/1, Bestimmungsführer, Spektrum Akademischer Verlag, Heidelberg, Berlin, pp 501–505

  • Heip C, Vincx M, Vranken G (1985) The ecology of marine nematodes. Ocean Mar Biol Ann Rev 23:399–489

    Google Scholar 

  • Hurlbert SM (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577–586

    Article  Google Scholar 

  • Jackson GA, Winant CD (1983) Effect of a kelp forest on coastal currents. Cont Shelf Res 2:75–80

    Article  Google Scholar 

  • Jones CG, Lawton JH, Shachak M (1994) Organisms as ecosystem engineers. Oikos 69:373–386

    Article  Google Scholar 

  • Kiriakoulakis K, Bett BJ, White M, Wolff GA (2004) Organic biogeochemistry of the Darwin Mounds, a deep-water coral ecosystem, of the NE Atlantic. Deep Sea Res I 51:1937–1954

    Article  CAS  Google Scholar 

  • Lambshead PJD (2004) Marine nematode biodiversity. In: Chen ZX, Chen SY, Dickson DW (eds) Nematology: advances and perspectives volume 1: nematode morphology, physiology and ecology. London, CABI Publishing, pp 436–467

    Google Scholar 

  • Lesser MP, Slattery M, Leichter JJ (2009) Ecology of mesophotic coral reefs. J Exp Mar Biol Ecol 375:1–8

    Article  Google Scholar 

  • Lorenzen CJ, Jeffrey SW (1980) Determination of chlorophyll in seawater. UNESCO Tech Pap Mar Sci 35, 20 p

    Google Scholar 

  • Margalef DR (1958) Information theory in ecology. Gen Syst 3:36–71

    Google Scholar 

  • Nepf H, Ghisalberti M (2008) Flow and transport in channels with submerged vegetation. Acta Geophys 56:753–777

    Article  Google Scholar 

  • Ocaña O, Brito A (2004) A review of Gerardiidae (Anthozoa: Zoantharia) from Macaronesian Islands and the Mediterranean sea with the description of a new species. Rev Acad Canar Cienc 15:159–189

    Google Scholar 

  • Pielou EC (1975) Ecological diversity. Wiley, New York, 165 pp

    Google Scholar 

  • Platt HM, Warwick RM (1983) Freeliving marine nematode part I: British enoplids. Synopses of the British fauna no. 28. Cambridge University Press, Cambridge

    Google Scholar 

  • Platt HM, Warwick RM (1988) Freeliving marine nematodes. Part 11: British chromadorida. Synopses of the British fauna no. 38. Brill, Lei

    Google Scholar 

  • Pusceddu A, Sarà G, Armeni M et al (1999) Seasonal and spatial changes in the sediment organic matter of a semi-enclosed marine system (W-Mediterranean Sea). Hydrobiologia 397:59–70

    Article  CAS  Google Scholar 

  • Pusceddu A, Dell’Anno A, Fabiano M, Danovaro R (2004) Quantity and biochemical composition of organic matter in marine sediments. Biol Mar Medit 11(Suppl 1):39–53

    Google Scholar 

  • Pusceddu A, Fiordelmondo C, Polymenakou P et al (2005) Impact of bottom trawling on quantity, biochemical composition and bioavailability of sediment organic matter in coastal sediments (Thermaikos Gulf, Greece). Cont Shelf Res 25:2491–2505

    Article  Google Scholar 

  • Pusceddu A, Fraschetti S, Mirto S et al (2007) Effects of intensive mariculture on sediment biochemistry. Ecol Appl 17:1366–1378

    Article  PubMed  Google Scholar 

  • Pusceddu A, Dell’Anno A, Fabiano M, Danovaro R (2009) Quantity and bioavailability of sediment organic matter as complementary signatures of benthic trophic status. Mar Ecol Prog Ser 23:288–293

    Google Scholar 

  • Pyle RL (1996) The twilight zone. Nat Hist Mag 105:59–62

    Google Scholar 

  • Pyle RL (2000) Assessing undiscovered fish biodiversity on deep coral reefs using advanced self-contained diving technology. Mar Tech Soc J 34:82–91

    Article  Google Scholar 

  • Reed J, Pomponi S, Ginsburg R (2008) Zonation of mesophotic reefs in the Bahamas. Abstract 11th Coral Reef Symp, Fort Lauderdale, Florida

  • Roark EB, Guilderson TP, Dunbar RB et al (2006) Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals. Mar Ecol Prog Ser 327:1–14

    Article  CAS  Google Scholar 

  • Roark EB, Guilderson TP, Dunbar RB et al (2009) Extreme longevity in proteinaceous deep-sea corals. Proc Natl Acad Sci 106:5204–5208

    Article  CAS  PubMed  Google Scholar 

  • Roberts JM, Wheeler AJ, Freiwald A (2006) Reefs of the deep: the biology and geology of cold-water coral ecosystems. Science 312:543–547

    Article  CAS  PubMed  Google Scholar 

  • Rossi L (1958) Primo rinvenimento di Gerardia savaglia (Bert) (Zoantharia) nei mari italiani (Golfo di Genova). Doriana 2(85): 8 pp

    Google Scholar 

  • Salas C (1996) Marine bivalves from off the Southern Iberian Peninsula collected by the Balgim and Fauna 1 expeditions. Haliotis 25:33–100

    Google Scholar 

  • Sanders HL (1968) Marine benthic diversity: a comparative study. Am Nat 102:243–282

    Article  Google Scholar 

  • Scinto A, Bertolino M, Calcinai B et al (2009) Role of a Paramuricea clavata forest in modifying the coralligenous assemblages. 1st Symposium sur le Coralligène et autre bio concrétions calcaires, Tabarka, pp 136–140

  • Seinhorst JW (1959) A rapid method for the transfer of nematodes from fixative to anhydrous glycerin. Nematologica 4:67–69

    Google Scholar 

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shashar N, Kinane S, Jokiel PL (1996) Hydromechanical boundary layers over a coral reef. J Exp Mar Biol Ecol 199:17–28

    Article  Google Scholar 

  • Slattery M, Gochfeld D (2006) Ocean exploration and drug discovery in the twilight zone. Eos Trans AGU 87(52), Fall Meet. Suppl., Abstract OS42B-03

  • Vallentyne R (1964) Biogeochemistry of organic matter—II. Thermal reaction kinetics and transformation products of amino compounds. Geochim Cosmochim Acta 28:157–188

    Article  CAS  Google Scholar 

  • Waller RG, Baco AR (2007) Reproductive morphology of three species of deep-water precious corals from the Hawaiian Archipelago: Gerardia sp., Corallium secundum and Corallium lauuense. Bull Mar Sci 81:533–542

    Google Scholar 

  • Warwick RM, Platt HM, Somerfield PJ (1998) Freeliving marine nematode. Part 111: British monhystenda. Synopses of the British fauna no. 53. Field Studies Council, Shrewsbury

    Google Scholar 

  • Wheeler AJ, Kozachenko M, Masson DG, Huvenne VAI (2008) Influence of benthic sediment transport on cold-water coral bank morphology and growth: the example of the Darwin Mounds, north-east Atlantic. Sedimentology. doi:10.1111/j.1365-3091.2008.00970.x

  • Zubay G (1988) Biochemistry, 2nd edn. MacMillian Publishing Company, New York

    Google Scholar 

Download references

Acknowledgments

We thank Bruno Borelli (Portofino Divers, http://portofinodivers.com/it) for diving assistance. This work was financially supported by the project HERMIONE (Hotspot Ecosystem Research and Man’s Impact on European Seas, FP7-ENV-2008-1 Contract N. 226354).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Cerrano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerrano, C., Danovaro, R., Gambi, C. et al. Gold coral (Savalia savaglia) and gorgonian forests enhance benthic biodiversity and ecosystem functioning in the mesophotic zone. Biodivers Conserv 19, 153–167 (2010). https://doi.org/10.1007/s10531-009-9712-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9712-5

Keywords

Navigation