Skip to main content

Advertisement

Log in

Traditional land use associated with swidden agriculture changes encounter rates of the top predator, the army ant, in Southeast Asian tropical rain forests

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

We examined the effect of traditional swidden agriculture on biodiversity using the litter arthropod top predator, the army ant Aenictus (Hymenoptera: Formicidae) as an indicator species in and around an intact tropical rain forest in Sarawak, Borneo, Malaysia. We compared the encounter rates with Aenictus colonies among five forest types: continuous primary forest, isolated primary forest, old secondary forest (>20 years elapsed after abandonment of the fields), young secondary forest (5 years after abandonment), and new fallow (2 years after abandonment) by intensive area searching in 2003 and 2005. In total, seven Aenictus species (15 colonies) and six Aenictus species (11 colonies) were encountered in 2003 and 2005, respectively. The encounter rates were the highest in continuous and isolated primary forests, intermediate in old and young secondary forests, and the lowest in new fallow. Year and the interaction between year and forest type were not significant. That is, abundance of top predators, which is rare and likely to be vulnerable to disturbance, has never fully recovered even 20 years after the termination of cultivation. We discuss forest management strategies to sustain biological diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aummeeruddy Y, Sansonnens B (1994) Shifting from simple to complex agroforestry systems: an example for buffer zone management from Kerinci. Agrofor Ayst 28:113–141. doi:10.1007/BF00704825

    Article  Google Scholar 

  • Baum JK, Myers RA, Kehler DG, Worm B, Harley SJ, Doherty PA (2003) Collapse and conservation of shark populations in the Northwest Atlantic. Science 299:389–392. doi:10.1126/science.1079777

    Article  PubMed  CAS  Google Scholar 

  • Berghoff SM, Maschwitz U, Linsenmair KE (2003) Influence of the hypogaeic army ant Dorylus (Dichthadia) laevigatus on tropical arthropod communities. Oecologia 135:149–157

    PubMed  Google Scholar 

  • Bestelmeyer BT, Wiens JA (1996) The effects of land use on the structure of ground-foraging ant communities in the Argentine Chaco. Ecol Appl 6:1225–1240. doi:10.2307/2269603

    Article  Google Scholar 

  • Bigger M (1993) Ant homopteran interactions in a tropical ecosystem. Description of an experiment on cocoa in Ghana. Bull Entomol Res 83:475–505

    Article  Google Scholar 

  • Boswell GP, Britton NF, Franks NR (1998) Habit fragmentation, percolation theory and the conservation of a keystone species. Proc R Soc Lond B Biol Sci 265:1921–1925. doi:10.1098/rspb.1998.0521

    Article  Google Scholar 

  • CanopOn (2003) User’s Manual for CanopOn 2. Available from http://takenaka-akio.cool.ne.jp/etc./canopon2/

  • Carvalho KS, Vasconcelos HL (1999) Forest fragmentation in central Amazonia and its effects on litter-dwelling ants. Biol Conserv 91:151–157. doi:10.1016/S0006-3207(99)00079-8

    Article  Google Scholar 

  • Coates-Eatrade R, Estrada A (1989) Avian attendance and foraging at army-ant swarms in the tropical rain forest of Los Tuxtlas, Veracruz, Mezico. J Rop Ecol 5:281–292

    Google Scholar 

  • Coomes OT, Grimard F, Burt G (2000) Tropical forests and shifting cultivation: secondary forest fallow dynamics among traditional formers of the Peruvian Amazon. Ecol Econ 32:109–124. doi:10.1016/S0921-8009(99)00066-X

    Article  Google Scholar 

  • Cyranoski D (2007) Logging: the new conservation. Nature 446:608–610. doi:10.1038/446608a

    Article  PubMed  CAS  Google Scholar 

  • Davidson DW, McKey D (1993) The evolutionary ecology of symbiotic ant-plant relationships. J Hymenopt Res 2:13–83

    Google Scholar 

  • Deka RN, Wairiu M, Mullins PW, Mullins E, Veernendaal EM, Townend J (1995) Use and accuracy of the filter-paper technique for measurement of soil matric potential. Eur J Soil Sci 46:233–238. doi:10.1111/j.1365-2389.1995.tb01831.x

    Article  Google Scholar 

  • Duffy JE (2003) Biodiversity loss, trophic skew and ecosystem functioning. Ecol Lett 6:680–687. doi:10.1046/j.1461-0248.2003.00494.x

    Article  Google Scholar 

  • Fiala B, Linsenmair KE (1995) Distribution and abundance of plants with extrafloral nectaries in the woody flora of a lowland primary forest in Malaysia. Biodivers Conserv 4:165–182. doi:10.1007/BF00137783

    Article  Google Scholar 

  • Fittkau EJ, Klinge H (1973) On biomass and tropic structure of the central Amazonian rain ecosystem. Biotropica 5:2–14. doi:10.2307/2989676

    Article  Google Scholar 

  • Franks NR (1982) A new method for censusing animal populations: the number of Eciton burchelli army ant colonies on Barro Colorado island, Panama. Oecologia 52:266–268. doi:10.1007/BF00363847

    Article  Google Scholar 

  • Franks NR, Bossert WH (1983) The influence of swarm raiding army ants on the patchness and diversity of a tropical leaf litter ant community. In: Sutton SL, Whitomore TC, Chadwick AC (eds) Tropical rain forest: ecology and management. Blackwell, Oxford, pp 151–163

    Google Scholar 

  • Franks NR, Fletcher CR (1983) Spatial patterns in army ant foraging and migration: Eciton burchelli on Barro Coorada Island, Panama. Behav Ecol Sociobiol 12:261–270. doi:10.1007/BF00302894

    Article  Google Scholar 

  • Freeman JD (1955) Iban agriculture: a report on the shifting cultivation of hill rice by the Iban of Sarawak. HMSO, London

    Google Scholar 

  • Gotward WH Jr (1976) Behavioral observations on African army ants of the genus Aenictus (Hymenoptera: Formicidae). Biotropica 8:59–65. doi:10.2307/2387819

    Article  Google Scholar 

  • Gotward WH Jr (1995) Army ants: the biology of social predation. Cornell University Press, Ithaca

    Google Scholar 

  • Gove AD, Rico-Gray V (2006) What determines conditionality in ant–Hemiptera interactions? Hemiptera habitat preference and the role of local ant activity. Ecol Entomol 31:568–574. doi:10.1111/j.1365-2311.2006.00821.x

    Article  Google Scholar 

  • Hirosawa H, Higashi S, Mohamed M (2000) Food habits of Aenictus army ants and their effects on the ant community in a rain forest of Borneo. Insectes soc 47:42–49

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Horvitz CC, Beattie AJ (1980) Ant dispersal of Calathea-Marantaceae seeds by carnivorous Ponerines (Formicidae) in a tropical rain forest. Am J Bot 67:321–326. doi:10.2307/2442342

    Article  Google Scholar 

  • Ichikawa M (2002) Studies on uses of ecological resources at an Iban village in Bakong river basin, Sarawak. PhD Thesis, Kyoto University (in Japanese)

  • Inoue T, Yumoto T, Hamid AA, Seng LH, Ogino K (1995) Constructipon of a canopy observation system in a tropical rainforest of Sarawak. Selbyana 16:24–35

    Google Scholar 

  • Jackson JBC, Kirby MX, Berger WH, Bjorndal KA, Botsford LW, Bourque BJ et al (2001) Historical overfishing and the recent collapse of coastal ecosystems. Science 293:629–638. doi:10.1126/science.1059199

    Article  PubMed  CAS  Google Scholar 

  • Kaspari M (1996) Testing resource-based models of patchiness in four Neotropical litter ant assemblages. Oikos 76:443–454. doi:10.2307/3546338

    Article  Google Scholar 

  • Kaspari M, O’Donnell S (2003) High rates of army ant raids in the Neotropics and implications for ant colony and community structure. Evol Ecol Res 5:933–939

    Google Scholar 

  • Kaspari M, O’Donnell S, Kercher JR (2000) Energy, density, and constraints to species richness: ant assemblages along a productivity gradient. Am Nat 155:280–293. doi:10.1086/303313

    Article  PubMed  Google Scholar 

  • Kato M, Inoue T, Hamid AA, Nagagitsu T, Yamane S, Yumoto T (1995) Seasonality and vertical structure of light-attracted insect communities in a dipterocarp forest in Sarawak. Popul Ecol 37:59–79. doi:10.1007/BF02515762

    Article  Google Scholar 

  • King JR, Andersen AN, Cutter AD (1998) Ants as bioindicators of habitat disturbance: validation of the functional group model for Australia’s humid tropics. Biodivers Conserv 7:1627–1638. doi:10.1023/A:1008857214743

    Article  Google Scholar 

  • Lanly JP (1982) Tropical forest resources. FAO Forestry Paper 30. FAO, Rome

    Google Scholar 

  • Lovejoy TE, Rankin JM, Bierregaard Jr RO, Brown Jr KS, Emmons LH, van der Voort M (1984) Ecosystem decay of Amazon forest remnans. In: Nitecki MH et al (eds) Extinctions. University of Chicago Press, Chicago, pp 295–335

    Google Scholar 

  • Meisel JE (2006) Thermal ecology of the neotropical army ant Eciton burchellii. Ecol Appl 16:913–922. doi:10.1890/1051-0761(2006)016[0913:TEOTNA]2.0.CO;2

    Article  PubMed  Google Scholar 

  • Myers N (1988) Tropical deforestation and climatic-change. Environ Conserv 15:293–298

    Article  Google Scholar 

  • Myers RA, Worm B (2003) Rapid worldwide depletion of predatory fish communities. Nature 423:280–283. doi:10.1038/nature01610

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa M, Miguchi H, Nakashizuka T (2006) The effects of various forest uses on small mammal communities in Sarawak, Malaysia. For Ecol Manage 231:55–62. doi:10.1016/j.foreco.2006.05.006

    Article  Google Scholar 

  • Nakashizuka T, Sakai S, Chomg L (2003) Lambir Hills National Park canopy crane, Malaysia. In: Basset Y, Horlyck V, Wright J (eds) Studying forest canopies from above, The international canopy crane network, Smithonian Tropical Research Institute, Ancon, Panama, and the United Nations Environmental Programme, p 120–125

  • O’Donnell S, Kumar A (2006) Microclimatic factors associated with elevational changes in army ant density in tropical montane forest. Ecol Entomol 31:491–498. doi:10.1111/j.1365-2311.2006.00805.x

    Article  Google Scholar 

  • O’Donnell S, Lattke J, Powell S, Kaspari M (2007) Army ants in four forests: geographic variation in raid rates and species composition. J Anim Ecol 76:50–589. doi:10.1111/j.1365-2656.2007.01221.x

    Google Scholar 

  • Ohkawara K (2001) Effect of two army ant species, Dorylus laevigatus and Pheidologeton affinis, on seed survival and germination in bird-dispersed plant Dysoxylum alliaceum. Tropics 10:421–426

    Article  Google Scholar 

  • Otis GW, Santana E, Crawford DL, Higgins ML (1986) The effect of foraging army ants on leaf-litter arthropods. Biotropica 18:56–61. doi:10.2307/2388363

    Article  Google Scholar 

  • Patridge LW, Britton NF, Franks NR (1996) Army ant population dynamics: the effects of habitat quality and reserve size on population size and time to extinction. Proc R Soc Lond B Biol Sci 263:735–741. doi:10.1098/rspb.1996.0110

    Article  Google Scholar 

  • Perfecto I, Vandermeer J (1996) Microclimatic changes and the indirect loss of ant diversity in a tropical agroecosystem. Oecologia 108:577–582. doi:10.1007/BF00333736

    Article  Google Scholar 

  • Petchey OL, McPhearson PT, Casey TM, Morin PJ (1999) Environmental warming alters food-web structure and ecosystem function. Nature 402:69–72. doi:10.1038/47023

    Article  CAS  Google Scholar 

  • Polis GA, Sears ALW, Huxel GR, Strong DR, Maron J (2000) When is a trophic cascade a trophic cascade? Trends Ecol Evol 15:473–475. doi:10.1016/S0169-5347(00)01971-6

    Article  PubMed  Google Scholar 

  • Rettenmeyer CW (1963a) The behavior of Thysanura found with army ants. Ann Entomol Soc Am 56:170–174

    Google Scholar 

  • Rettenmeyer CW (1963b) Behavioral studies of army ants. Univ Kan Sci Bull 44:281–465

    Google Scholar 

  • Roberts DL, Robert JC, Petit LJ (2000) Use of premontane moist forest and shade coffee agroecosystems by army ants in Westrn Panama. Conserv Biol 14:192–199. doi:10.1046/j.1523-1739.2000.98522.x

    Article  Google Scholar 

  • Salafsky N (1993) Mammalian use of a buffer zone agroforestry system bordering Gunung Palung National Park, West Kalimantan, Indonesia. Conserv Biol 7:928–933. doi:10.1046/j.1523-1739.1993.740928.x

    Article  Google Scholar 

  • SAS Institute Inc (2000) JMP statistics and Graphic Guide, Version 4. SAS Institute Inc, Cary NC

    Google Scholar 

  • Schmitz OJ, Suttle KB (2001) Effects of top predator species on direct and indirect interactions in a food web. Ecology 82:2072–2081

    Article  Google Scholar 

  • Schmitz OJ, Hamback PA, Beckerman AP (2000) Trophic cascades in terrestrial systems: a review of the effects of carnivore removals on plants. Am Nat 155:141–153. doi:10.1086/303311

    Article  PubMed  Google Scholar 

  • Schneirla TC (1971) Army ants: a study in social organization. Freeman and Company, San Francisco

    Google Scholar 

  • Schneirla TC, Reyes AY (1966) Raiding and related behaviour in two surface-adapted species of the Old World doryline ant Aenictus. Anim Behav 14:132–148. doi:10.1016/S0003-3472(66)80022-2

    Article  PubMed  CAS  Google Scholar 

  • Schneirla TC, Reyes AY (1969) Emigrations and related behavior in two surface-adapted species of the Old World doryline ant Aenictus. Anim Behav 17:87–103. doi:10.1016/0003-3472(69)90116-X

    Article  Google Scholar 

  • Sussoni JP, Schatz B, Dejean A (2000) Essential and alternative prey in a ponerine ant: variations according to the colony life cycle. Life Sci 323:1003–1008

    Google Scholar 

  • Szara RC, Johnson DW (1996) Biodiversity in managed landscapes: theory and practice. Oxford Press, New York, p 778

    Google Scholar 

  • Uhl C, Nepstad D, Buschbacher R, Clark K, Kauffman B, Subler S (1990) Studies of ecosystem response to natural and arthropogenic disturbances provide guidelines for designing sustainable land-use systems in Amazonia. In: Anderson A (ed) Alternative to deforestation, Steps toward to sustainable use of the Amazon Rain Forest New York. Colombia University Press, New York, pp 24–42

    Google Scholar 

  • Vasconcelos HL (1991) Mutualism between maieta-guianensis aubl, a myrmecophytic melastome, and one of its ant inhabitants. Ant protection against insect herbivores. Oecologia 87:295–298. doi:10.1007/BF00325269

    Article  Google Scholar 

  • Vasconcelos HL (1999) Effects of forest disturbance on the structure of ground-foraging ant communities in central Amazonia. Biodivers Conserv 8:407–418. doi:10.1023/A:1008891710230

    Article  Google Scholar 

  • Voigt W, Perner J, Davis AJ, Eggers T, Schmacher J, Bährmann R et al (2003) Trophic levels are differentially sensitive to climate. Ecology 84:2444–2453. doi:10.1890/02-0266

    Article  Google Scholar 

  • Wagner D (1997) The influence of ant nests on Acacia seed production, herbivory and soil nutrients. J Ecol 85:83–93. doi:10.2307/2960629

    Article  Google Scholar 

  • Ward P, Myers RA (2005) Shifts in open-ocean fish communities coinciding with the commencement of commercial fishing. Ecology 86:835–847. doi:10.1890/03-0746

    Article  Google Scholar 

  • Willis EO, Oniki Y (1978) Birds and army ants. Annu Rev Ecol Syst 9:243–263. doi:10.1146/annurev.es.09.110178.001331

    Article  Google Scholar 

  • Wilson EO (1964) The true army ants of the Indo-Australian area (Hymenoptera: Formicidae: Dolylinae). Pac Insects 6:427–483

    Google Scholar 

  • Wilson EO (1987) The arboreal and fauna of Peruvian Amazon forests: a first assessment. Biotropica 19:245–251. doi:10.2307/2388342

    Article  Google Scholar 

  • Yamamura K (1999) Transformation using (x + 0.5) to stabilize the variance populations. Popul Ecol 41:229–234. doi:10.1007/s101440050026

    Article  Google Scholar 

  • Yamane S, Hashimoto Y (1999) A remarkable new species of the army ant genus Aenictus (Hymenoptera, Formicidae) with a polymorphic worker caste. Tropics 8:427–432

    Article  Google Scholar 

  • Yamane Sk, Itino T, Nona AR (1996) Ground ant fauna in a Bornean Dipterocarp forest. Raffles Bull Zool 44:253–262

    Google Scholar 

Download references

Acknowledgments

We thank L. Chong (Sarawak Forestry Corporation), Dr. J. Kendawang (Forest Department Sarawak), and the staff of Lambir Hills National Park for permitting us to perform our study, H. Kaliang (Sarawak Forestry Corporation) for helping us take specimens from Sarawak to identify, M. Aiba (Kyoto University) for measuring environmental variables, T. Nakashizuka for establishing sites, and Deline for mounting the ant specimens. This study was financially supported by RIHN research project 2-2 and a JSPS Research Fellowship for Young Scientists to T.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Matsumoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, T., Itioka, T., Yamane, S. et al. Traditional land use associated with swidden agriculture changes encounter rates of the top predator, the army ant, in Southeast Asian tropical rain forests. Biodivers Conserv 18, 3139–3151 (2009). https://doi.org/10.1007/s10531-009-9632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9632-4

Keywords

Navigation