Skip to main content

Advertisement

Log in

Mapping potential habitats of threatened plant species in a moist tall grassland using hyperspectral imagery

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

We examined the capability of hyperspectral imagery to map habitat types of under-storey plants in a moist tall grassland dominated by Phragmites australis and Miscanthus sacchariflorus, using hyperspectral remotely-sensed shoot densities of the two grasses. Our procedure (1) grouped the species using multivariate analysis and discriminated habitat types (species groups) based on P. australis and M. sacchariflorus shoot densities, (2) used estimated shoot densities from hyperspectral data to draw a habitat type map, and (3) analyzed the association of threatened species with habitat types. Our identification of four habitat types, using cluster analysis of the vegetation survey coverage data, was based on P. australis and M. sacchariflorus shoot density ratios and had an overall accuracy of 77.1% (kappa coefficient = 0.71). Linear regression models based on hyperspectral imagery band data had good accuracy in estimating P. australis and M. sacchariflorus shoot densities (adjusted R 2 = 0.686 and 0.708, respectively). These results enabled us to map under-storey plant habitat types to an approximate prediction accuracy of 0.537. Among the eight threatened species we examined, four exhibited a significantly biased distribution among habitat types, indicating species-specific habitat use. These results suggest that this procedure can provide useful information on the status of potential habitats of threatened species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abul-Fatih HA, Bazzaz FA (1979) The biology of Ambrosia trifida L. I. Influence of species removal on the organization of the plant community. New Phytol 83:813–816. doi:10.1111/j.1469-8137.1979.tb02312.x

    Article  Google Scholar 

  • Aksenova AA, Onipchenko VG (1998) Plant interactions in alpine tundra: 13 years of experimental removal of dominant species. Ecoscience 5:258–270

    Google Scholar 

  • Allen EB, Forman RTT (1976) Plant species removals and old-field community structure and stability. Ecology 57:1233–1243. doi:10.2307/1935047

    Article  Google Scholar 

  • Arscott DB, Tockner K, van der Nat D, Ward JV (2002) Aquatic habitat dynamics along a braided alpine river ecosystem (Tagliamento River, Northeast Italy). Ecosystems (N Y, Print) 5:802–814

    Google Scholar 

  • Blackburn GA (1998) Quantifying chlorophylls and carotenoids at leaf and canopy scales: an evaluation of some hyperspectral approaches. Remote Sens Environ 66:273–285. doi:10.1016/S0034-4257(98)00059-5

    Article  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2nd edn. Springer, New York

    Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes: models and applications. Pion, London

    Google Scholar 

  • Cochrane MA (2000) Using vegetation reflectance variability for species level classification of hyperspectral data. Int J Remote Sens 21:2075–2087. doi:10.1080/01431160050021303

    Article  Google Scholar 

  • Denslow JS (1985) Disturbance-mediated coexistence of species. Academic Press, New York

    Google Scholar 

  • Edyvane KS (1999) Coastal and marine wetlands in Gulf St. Vincent, South Australia: understanding their loss and degradation. Wetlands Ecol Manage 7:83–104. doi:10.1023/A:1008481228129

    Article  Google Scholar 

  • Environmental Agency of Japan (2007) Red List of threatened plants of Japan. http://www.env.go.jp/press/file_view.php?serial=9947&hou_id=8648 (in Japanese). Cited 25 Jan 2009

  • Ferrier S (2002) Mapping spatial pattern in biodiversity for regional conservation planning: where to from here? Syst Biol 51:331–363. doi:10.1080/10635150252899806

    Article  PubMed  Google Scholar 

  • Fowler N (1981) Competition and coexistence in a North Carolina grassland II. The effects of the experimental removal of species. J Ecol 69:843–854. doi:10.2307/2259640

    Article  Google Scholar 

  • Galvão LS, Filho WP, Abdon MM, Novo EMML, Silva JSV, Ponzoni FJ (2003) Spectral reflectance characterization of shallow lakes from the Brazilian Pantanal wetlands with field and airborne hyperspectral data. Int J Remote Sens 24:4093–4112. doi:10.1080/0143116031000070382

    Article  Google Scholar 

  • Gibbs JP (2000) Wetland loss and biodiversity conservation. Conserv Biol 14:314–317. doi:10.1046/j.1523-1739.2000.98608.x

    Article  Google Scholar 

  • Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Modell 135:147–186. doi:10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • Guisan A, Broennimann O, Engler R, Vust M, Yoccoz NG, Lehmann A, Zimmermann NE (2006) Using niche-based models to improve the sampling of rare species. Conserv Biol 20:501–511. doi:10.1111/j.1523-1739.2006.00354.x

    Article  PubMed  Google Scholar 

  • Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36

    PubMed  CAS  Google Scholar 

  • Haslam SM (1972) Phragmites communis Trin. J Ecol 60:585–610. doi:10.2307/2258363

    Article  Google Scholar 

  • Hils MH, Vankat JL (1982) Species removals from a first-year old-field plant community. Ecology 63:705–711. doi:10.2307/1936791

    Article  Google Scholar 

  • Jäkäläniemi A, Tuomi J, Siikamäki P (2006) Conservation of species in dynamic landscapes: divergent fates of Silene tatarica populations in riparian habitats. Conserv Biol 20:844–852. doi:10.1111/j.1523-1739.2006.00348.x

    Article  PubMed  Google Scholar 

  • Keddy PA (2000) Wetland ecology: principles and conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Kokaly RF, Despain DG, Clark RN, Livo KE (2003) Mapping vegetation in Yellowstone National Park using spectral feature analysis of AVIRIS data. Remote Sens Environ 84:437–456. doi:10.1016/S0034-4257(02)00133-5

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier Science, Amsterdam

    Google Scholar 

  • Löbel S, Snäll T, Rydin H (2006) Metapopulation processes in epiphytes inferred from patterns of regional distribution and local abundance in fragmented forest landscapes. J Ecol 94:856–868. doi:10.1111/j.1365-2745.2006.01114.x

    Article  Google Scholar 

  • Lu S, Funakoshi S, Shimizu Y, Ishii J, de Asis AM, Ajima M, Washitani I, Omasa K (2006) Estimation of plant abundance and distribution of Miscanthus sacchariflorus and Phragmites australis using matched filtering of hyperspectral image. Eco-Engineering 18:65–70

    Google Scholar 

  • Lu S, Oki K, Shimizu Y, Omasa K (2007) Comparison between several feature extraction/classification methods for mapping complicated agricultural land use patches using airborne hyperspectral data. Int J Remote Sens 28:963–984. doi:10.1080/01431160600771561

    Article  Google Scholar 

  • McCune B, Grace JB (2002) Analysis of ecological communities. MjM Software, Gleneden Beach

    Google Scholar 

  • McCune B, Mefford MJ (1999) Multivariate analysis of ecological data, Vers 4.20. MjM Software, Gleneden Beach

    Google Scholar 

  • Mertes LAK (2002) Remote sensing of riverine landscapes. Freshw Biol 47:799–816. doi:10.1046/j.1365-2427.2002.00909.x

    Article  Google Scholar 

  • Ministry of Land, Infrastructure and Transport of Japan (2000) Lake and Wetland Survey of Geographical Survey Institute (in Japanese). http://www1.gsi.go.jp/geowww/lake/index.html

  • Moilanen A, Hanski I (1998) Metapopulation dynamics: effects of habitat quality and landscape structure. Ecology 79:2503–2515

    Article  Google Scholar 

  • Mutanga O, Skidmore AK, Prins HHT (2004) Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sens Environ 89:393–408. doi:10.1016/j.rse.2003.11.001

    Article  Google Scholar 

  • Ohmann JL, Gregory MJ (2002) Predictive mapping of forest composition and structure with direct gradient analysis and nearest-neighbor imputation in coastal Oregon USA. Can J For Res 32:725–741. doi:10.1139/x02-011

    Article  Google Scholar 

  • Ohwada M, Ogura H (1996) A floristic study of the Watarase retarding basin. Bull Tochigi Pref Mus 13:31–108 In Japanese with English abstract

    Google Scholar 

  • Ozesmi SL, Bauer ME (2002) Satellite remote sensing of wetlands. Wetlands Ecol Manage 10:381–402. doi:10.1023/A:1020908432489

    Article  Google Scholar 

  • R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Richards K, Brasington J, Hughes F (2002) Geomorphic dynamics of floodplains: ecological implications and a potential modelling strategy. Freshw Biol 47:559–579. doi:10.1046/j.1365-2427.2002.00920.x

    Article  Google Scholar 

  • Rosenfield GH, Fitzpatrick-Lins K (1986) A coefficient of agreement as a measure of thematic classification accuracy. Photogramm Eng Rem S 52:223–227

    Google Scholar 

  • Schmidt KS, Skidmore AK (2003) Spectral discrimination of vegetation types in a coastal wetland. Remote Sens Environ 85:92–108. doi:10.1016/S0034-4257(02)00196-7

    Article  Google Scholar 

  • Schmidtlein S, Sassin J (2004) Mapping of continuous floristic gradients in grasslands using hypersperctral imagery. Remote Sens Environ 92:126–138. doi:10.1016/j.rse.2004.05.004

    Article  Google Scholar 

  • Shevtsova A, Ojala A, Neuvonen S, Vieno M, Haukioja E (1995) Growth and reproduction of dwarf shrubs in a subarctic plant community: annual variation and above-ground interactions with neighbours. J Ecol 83:263–275. doi:10.2307/2261565

    Article  Google Scholar 

  • Sinclair ARE, Hik DS, Schmitz OJ, Scudder GGE (1995) Biodiversity and the need for habitat renewal. Ecol Appl 5:579–687. doi:10.2307/1941968

    Article  Google Scholar 

  • Thenkabail PS, Smith RB, Pauw ED (2000) Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ 71:158–182. doi:10.1016/S0034-4257(99)00067-X

    Article  Google Scholar 

  • Turner W, Spector S, Gardiner N, Fladeland M, Sterling E, Steininger M (2003) Remote sensing for biodiversity science and conservation. Trends Ecol Evol 18:306–314. doi:10.1016/S0169-5347(03)00070-3

    Article  Google Scholar 

  • Washitani I (2001) Plant conservation ecology for management and restoration of riparian habitats of lowland Japan. Popul Ecol 43:189–195. doi:10.1007/s10144-001-8182-8

    Article  Google Scholar 

  • Whitehead PJ, Wilson BA, Bowman DMJS (1990) Conservation of coastal wetlands of the Northern Territory of Australia: the Mary River floodplain. Biol Conserv 52:85–111. doi:10.1016/0006-3207(90)90119-A

    Article  Google Scholar 

  • Yamasaki S (1990) Population dynamics in overlapping zones of Phragmites australis and Miscanthus sacchariflorus. Aquat Bot 36:367–377. doi:10.1016/0304-3770(90)90053-N

    Article  Google Scholar 

  • Yamasaki S, Tange I (1981) Growth responses of Zizania latifolia, Phragmites australis and Miscanthus sacchariflorus to varying inundation. Aquat Bot 10:229–239. doi:10.1016/0304-3770(81)90025-5

    Article  Google Scholar 

Download references

Acknowledgments

We thank Dr. Miho (Ajima) Nishihiro, Dr. Taku Kadoya, Dr. Shin-ichi Takagawa, Dr. Jun Nishihiro, and Mr. Akira Yoshioka of the University of Tokyo and Mr. Masumi Ohwada for field assistance and advice on data analyses. We also thank two anonymous reviewers for valuable comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Ishii.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishii, J., Lu, S., Funakoshi, S. et al. Mapping potential habitats of threatened plant species in a moist tall grassland using hyperspectral imagery. Biodivers Conserv 18, 2521–2535 (2009). https://doi.org/10.1007/s10531-009-9605-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-009-9605-7

Keywords

Navigation