Skip to main content

Advertisement

Log in

The effect of femel- and small scale clear-cutting on ground dwelling spider communities in a Norway spruce forest in Southern Germany

  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The early effects of femel-cutting (removing 20% of the trees) and small scale clear-cutting on ground-living spiders in a Norway spruce (Picea abies (L.) Karst.) forest in Southern Germany were investigated. The study was carried out as BACIP (before and after, control-impact, many paired samplings) study: Spiders were sampled during the pre-treatment year, the year of cutting, and the year after cutting. In total 7101 individuals were sampled, of which 4530 individuals were identified, 4468 were adult and 2633 individuals were juvenile. We identified 107 species, but a single species, Coelotes terrestris, dominated the control (spruce stand) comprising up to 49% of the total identified individuals. Clear-cutting changed the species composition in the traps, while the first step in femel-cutting preserved it. The number of individuals of the families Linyphiidae, Amaurobiidae, Agelenidae and Clubionidae decreased drastically within the 2 years after the clear-cutting, while the Lycosidae became numerically dominant in the clear-cut stands. The number of individuals with the following characterisation decreased significantly after clear-cutting: Small (<3.0 mm) and large spiders (>10.5 mm), web builders, ‘forest habitat species’, species favouring hygrophilic to medium moisture conditions, and preferences to live below ground or in and on the moss layer. On the other hand, middle-sized spiders, free hunters, ‘open habitat species’, spiders favouring dry conditions or that are euryoecious, preferring patterns covered by grasses or uncovered patches, increased in number. Clear-cut habitats with dense spruce regeneration showed a delayed and less pronounced response. With femel-cutting, species composition of ground-living spider communities may be preserved during the first step of regeneration of mature forest stands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anonymous 2004. Erfolgreich mit der Natur. Ergebnisse der zweiten Bundeswaldinventur in Bayern. – Bayerische Landesanstalt für Wald und Forstwirtschaft (LWF). www. lwf.bayern.de

  • Altegrim O. and Sjöberg K. (2004). Selective felling as a potential tool for maintaining biodiversity in managed forests. Biodivers. Conserv. 13: 1123–1133

    Article  Google Scholar 

  • Altegrim O. and Sjöberg K. (1995). Effects of clear-cutting and selective felling to Swedish Boreal coniferous forest: response of invertebrate taxa eaten by birds. Entomol. Fennica 6: 79–90

    Google Scholar 

  • Bennett L.T. and Adams M.A. (2004). Assessment of ecological effects due to forest harvesting: approaches and statistical issues. J. Appl. Ecol. 41:585–598

    Article  Google Scholar 

  • Blick T. and Scheidler M. (2003). Rote Liste gefährdeter Spinnen (Arachnida: Araneae) Bayerns. Bayerische Landesamt für Umweltschutz 166: 308–321

    Google Scholar 

  • Brand C., Höfer H. and Beck L. (1994). Zur Biologie eines Buchenwaldbodens, 16. Die Spinnenassoziation einer Windbruchfläche. Carolinea 52: 61–74

    Google Scholar 

  • Buddle C.M., Spence J.R. and Langor D.W. (2000). Succession of boreal forest spider assemblages following wildfire and harvesting. Ecography 23:424–436

    Article  Google Scholar 

  • Bultman T.L., Uetz G.W. and Brady A.R. (1982). A comparison of cursorial spider communities along a successional gradient. J. Arachnol. 10:23–33

    Google Scholar 

  • Butterbach-Bahl K., Gasche R., Huber C., Kreutzer K. and Papen H. (1998). Impact of N-input by wet deposition on N-trace gas fluxes and CH4-oxidation in spruce forest ecosystems of the temperate zone in Europe. Atmos. Environ. 32:559–564

    Article  CAS  Google Scholar 

  • Coyle F.A. (1981). Effects of clearcutting on the spider community of a southern Appalachian forest. J. Arachnol. 9:85–298

    Google Scholar 

  • Curry S.J., Humphreys W.F., Koch L.E. and Main B.Y. (1985). Changes in arachnid communities resulting from forestry practices in Karri Forest, south-west Western-Australia. Austr. Forest Res. 15:469–480

    Google Scholar 

  • Curtis D.J. (1980). Pitfalls in spider community studies (Arachnidae, Aranae). J. Arachnol. 8:271–280

    Google Scholar 

  • Docherty M. and Leather S.R. (1997). Structure and abundance of arachnid communities in Scots and lodgepole pine plantations. For. Ecol. Manage 95:197–207

    Article  Google Scholar 

  • Duffey E. (1978). Ecological strategies in spiders including some characteristics of species in pioneer and mature habitats. Symp. Zool. Soc. Lon 42:109–123

    Google Scholar 

  • Dumpert K. and Platen R. (1985). Zur Biologie eines Buchenwaldbodens. 4. Die Spinnenfauna. Carolinea 42:75–106

    Google Scholar 

  • Engel K. (1999). Analyse und Bewertung von Umbaumaßnahmen in Fichtenreinbeständen anhand ökologischer Gilden der Wirbellosen-Fauna. Wissenschaft & Technik Verlag, Berlin

    Google Scholar 

  • Gessler A., Schneider S., von Sengbusch D., Weber P., Hanemann U., Huber C., Rothe A., Kreutzer K. and Rennenberg H. (1998). Field and laboratory experiments on net uptake of nitrate and ammonium the roots of spruce (Picea abies) and beech (Fagus sylvatica) trees. New Phytol. 138:275–285

    Article  CAS  Google Scholar 

  • Geiger R. 1961. Das Klima der bodennahen Luftschicht, 4th ed. Braunschweig, 646 pp

  • Heimer S. and Nentwig W. (1991). Spinnen Mitteleuropas. Parey, Berlin

    Google Scholar 

  • Heydemann B. (1964). Die Carabiden der Kulturbiotope von Binnenland und Nordseeküste – ein ökologischer Vergleich (Coleopt., Carabidae). Zool. Anz. 172:4–86

    Google Scholar 

  • Hill M.O. and Gauch H.G. (1980). Detrended correspondence analysis: an improved ordination technique. Vegetatio 42:47–58

    Article  Google Scholar 

  • Huber C. and Kreutzer K. (2002). Three years of continuous measurements of atmospheric ammonia concentrations over a forest stand at the Höglwald site in southern Bavaria. Plant Soil 240:13–22

    Article  CAS  Google Scholar 

  • Huber C., Oberhauser A. and Kreutzer K. (2002). Deposition of ammonia to the forest floor under spruce and beech at the Höglwald site. Plant Soil 240:3–11

    Article  CAS  Google Scholar 

  • Huber C. and Baumgarten M. (2005). Early effects of forest regeneration with selective and small scale clear-cutting on ground beetles (Coleoptera, Carabidae) in a Norway spruce stand in Southern Bavaria (Höglwald). Biodiv. Conserv. 14:1989–2007

    Article  Google Scholar 

  • Huber C., Kreutzer K., Röhle H. and Rothe A. (2004a). Response of artificial acid irrigation, liming, and N-fertilisation on elemental concentrations in needles, litter fluxes, volume increment, and crown transparency of a N saturated Norway spruce stand. For. Ecol. Manage 200:3–21

    Article  Google Scholar 

  • Huber C., Weis W., Baumgarten M. and Göttlein A. (2004b). Spatial and temporal variation of seepage water chemistry after femel and small scale clear-cutting in a N-saturated Norway spruce stand. Plant Soil 267:23–40

    Article  CAS  Google Scholar 

  • Huhta V. (1971). Succession in the spider communities of the forest floor after clear-cutting and prescribed burning. Ann. Zool. Fennici 8:483–542

    Google Scholar 

  • Huhta V., Karprinen E., Nurminen M. and Valpas A. (1967). Effect of silvicultural practices upon arthropod, annelid and nematode populations in coniferous forest soil. Ann. Zool. Fennici 4:87–143

    Google Scholar 

  • Huhta V., Nurminen M. and Valpas A. (1969). Further notes on the effect of silvicultural practices upon the fauna of coniferous forest soil. Ann. Zool. Fennici 6:327–334

    Google Scholar 

  • Jennings D.T., Houseaert M.W., Dondale C.D. and Redner J.H. (1988). Spiders (Araneae) associated with strip-clearcut and dense spruce-fir forests of Maine. J. Arachnol. 16:55–70

    Google Scholar 

  • Jones D. 1990. Der Kosmos-Spinnenführer, Mitteleuropäische Spinnen und Weberknechte. – Franckh‘sche Verlagshandlung

  • Junker E.A., Ratschker U.M. and Roth M. 2000. Impacts of silvicultural practice on the ground living-spider community (Arachnidae: Araneae) of mixed mountain forest in the Chiemgau Alps (Germany). In: Gajdos P. and Pekar S. (eds), Proceedings of the 18th European Colloquium of Arachnology, Stara Lesna, 1999. Ekologia (Bratislava) 19, Supplement 3, pp. 107–117

  • Kajak H. (1965). An analysis of food relations between the spiders – Araneus cornutus Clerck and Araneus quadratus Clerck – and their prey in meadows. Ekol. Polska A 12:717–764

    Google Scholar 

  • Kreutzer K. (1995). Effects of forest liming on soil processes. Plant and Soil 168–169:447–470

    Article  Google Scholar 

  • Kreutzer K. and Bittersohl J. (1986). Investigations about the effects of acid deposition and compensative liming on the forest. Forstw. Cbl. 105: 273–282 (in German)

    Article  Google Scholar 

  • Kreutzer K. and Weiss T. (1998). The Höglwald field experiment – aims, concept and basic data. Plant Soil 199:1–10

    Article  CAS  Google Scholar 

  • Larsson S. and Danell K. (2001). Science and the management of boreal forest biodiversity. Scand. J. For. Res. Suppl. 3:5–9

    Google Scholar 

  • Likens G.E. (2001). Biogeochemistry, the watershed approach: some uses and limitations. Marine Freshw. Res. 52:5–12

    Article  CAS  Google Scholar 

  • Luff M.L. (1975). Some features influencing the efficiency of pitfall traps. Oecologia 19:345–357

    Google Scholar 

  • McCune B., Grace J.B. and Urban D.L. (2002). Analysis of Ecological Communities. MjM Software Design, Glenaden Beach, Oregon, USA, ISBN 0-9721290-0-6, www.pcord.com

    Google Scholar 

  • McIver J.D., Parsons G.L. and Moldenke A.R. (1992). Litter spider succession after clear-cutting in a western coniferous forest. Can. J. For. Res. 22:984–992

    Article  Google Scholar 

  • Moulder B.C. and Reichle D.E. (1972). Significance of spider predation in the energy dynamics of forest arthropod communities. Ecol. Monogr. 42:473–498

    Article  Google Scholar 

  • Okansen J. and Minchin P.R. (1997). Instability of ordination results under changes in input data order: explanations and remedies. J. Veg. Sci. 8:447–454

    Article  Google Scholar 

  • Pajunen T., Haila Y., Halme E., Niemelä J. and Punttila P. (1995). Ground-dwelling spiders (Arachnida, Araneae) in fragmented old forests and surrounding managed forests in southern Finland. Ecography 18:62–72

    Article  Google Scholar 

  • Pearce J.L., Venier L.A., Eccles G., Pedlar J. and McKenney D. (2004). Influence of habitat and microhabitat on epigeal spider (Araneae) assemblages in four stand types. Biodiv. Conserv. 13:1305–1334

    Article  Google Scholar 

  • Phillips I.D. and Cobb T.P. (2005). Effects of habitat structure and lid transparency on pitfall catches. Environ. Entomol. 34:875–882

    Article  Google Scholar 

  • Platen R., Moritz M., Broen B. v., Bothmann I., Bruhn K. and Simon U. 1991. Liste der Webspinnen- und Weberknechtarten (Arach.: Araneida, Opilionida) des Berliner Raumes und ihre Auswertung für Naturschutzzwecke (Rote Liste). In: Auhagen A., Platen R., and Sukopp H. (eds), Rote Liste der gefährdeten Pflanzen und Tiere in Berlin. Landschaftsentwicklung und Umweltforschung S 6: 169–205

  • Ratschker U.M. and Roth M. (2000). Studies on ground dwelling spiders (Araneae) of agrarian habitat types in Northeast Germany: ecological and nature conservation aspects. Ekologia-Bratislava 19:213–225 Suppl. 3, 2000

    Google Scholar 

  • Riechert S.E. and Gillespie R.G. 1986. Habitat choice and utilization in web-building spiders. In: Shear, W.A. (ed.), Spiders: Webs, Behaviour, and Evolution. Stanford University Press, pp. 23–48

  • Riecken U. (1999). Effects of short-term sampling on ecological characterisation and evaluation of epigeic spider communities and their habitats for site assessment studies. J. Arachnol. 27:189–195

    Google Scholar 

  • Robinson J.V. (1981). The effect of architectural variation in habitat on a spider community: an experimental field study. Ecology 62:73–80

    Article  Google Scholar 

  • Rothe A., Huber C., Kreutzer K. and Weis W. (2002). Deposition and soil leaching in stands of Norway spruce and European beech: results from the Höglwald research in comparison with other case studies. Plant Soil 240:33–45

    Article  CAS  Google Scholar 

  • Rothe A. and Mellert K.H. (2004). Effects of forest management on nitrate concentrations in seepage water of forests in southern Bavaria, Germany. Water Air Soil Pollut. 156:337–355

    Article  CAS  Google Scholar 

  • Siira-Pietikäinen A., Pietikäinen J., Fritze H. and Haimi J. (2001). Short-term responses of soil decomposer communities to forest management: clear felling versus alternative forest harvesting methods. Can. J. For. Res. 31:88–99

    Article  Google Scholar 

  • Siira-Pietikäinen A., Haimi J. and Siitonen J. (2003). Short-term response of soil macroarhropod community to clear felling and alternative forest regeneration methods. For. Ecol. Manage 172:339–353

    Article  Google Scholar 

  • Spence J.R. (2001). The new boreal forestry: adjusting timber management to accommodate biodiversity. Trends Ecol. Evol. 16:591–593

    Article  Google Scholar 

  • Tilman D. (1989). Ecological experimentation: strengths and conceptual problems. In: Likens G.E. (eds) Long Term Studies in Ecology. Springer Verlag, New York, pp. 136–157

    Google Scholar 

  • Turnbull A.L. (1966). A population of spiders and their potential prey in an overgrazed pasture in eastern Ontario. Canad. J. Zool. 44:557–583

    Article  Google Scholar 

  • Uetz G.W. (1979). The influence of variation in litter habits on spider communities. Oecologia 40:29–42

    Article  Google Scholar 

  • Uetz G. W. 1991. Habitat structure and spider foraging. In: Bell S.S., McCoy E.D. and Mushinsky H.R. (eds), Habitat Structure: The Physical Arrangement of Objects in Space, Chapmann and Hall, pp. 325–348

  • Uetz G.W. and Unzicker J.D. (1976). Pitfall trapping in ecological studies of wandering spiders. J. Arachnol. 3:101–111

    Google Scholar 

  • Weis W., Huber C. and Göttlein A. (2001). Regeneration of mature Norway spruce stands. The impact of clear cutting and selective cutting on seepage water quality and soil fertility. Sci. World 1(S2):493–499

    Google Scholar 

Download references

Acknowledgements

The work was funded by the Bundesministerium für Bildung, Forschung und Technologie (BMBF), under contract number 0339733A. The authors are very grateful to Helmut Stumpf, Würzburg, Germany for the identification of spider species and the safekeeping of the specimens. We thank Dr Jacquie van der Waals, University of Pretoria, for editing of the manuscript and two anonymous reviewers for their comments to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Huber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huber, C., Schulze, C. & Baumgarten, M. The effect of femel- and small scale clear-cutting on ground dwelling spider communities in a Norway spruce forest in Southern Germany. Biodivers Conserv 16, 3653–3680 (2007). https://doi.org/10.1007/s10531-006-9004-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-006-9004-2

Keywords

Navigation