Skip to main content
Log in

Patterns of genetic variation reflect multiple introductions and pre-admixture sources of common ragweed (Ambrosia artemisiifolia) in China

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Ambrosia artemisiifolia is native to North America but has become a worldwide invasive weed. It was introduced to China more than 80 years ago and has spread into 20 provinces since then. To assess the population structure of A. artemisiifolia in China and whether this invasion involved a single event or multiple events, we investigated patterns of genetic variation for three chloroplast DNA intergenic spacer regions, a nrITS region and five microsatellite loci. Our dataset consists of 370 individuals from 19 sites throughout China. We compared their cpDNA-haplotypes to those published for native North American populations. The distribution of cpDNA-haplotypes indicates that A. artemisiifolia was introduced to China multiple times from different source regions. The numbers of alleles in Chinese populations were not significantly lower than in native populations. Both nrITS-haplotypes and microsatellite alleles showed that there was no evidence for a genetic bottleneck. Four populations were genetically well separated from the other 15 populations. However, the absence of isolation by distance, and the low levels of genetic differentiation and gene flow among the other 15 population suggest that most populations in China come from pre-admixed populations. To find the exact source regions of the Chinese populations, more samples from the native region and other invaded regions will be necessary. Nevertheless, our study provides important insights into the genetic background of A. artemisiifolia invasion in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allendorf FW (1986) Genetic drift and the loss of alleles versus heterozygosity. Zoo Biol 5:181–190

    Article  Google Scholar 

  • Berbegal M, Armengol J, Grünwald NJ (2013) Evidence for multiple introductions and clonality in spanish populations of Fusarium circinatum. Phytopathology 103:851–861

    Article  CAS  PubMed  Google Scholar 

  • Blossey B, Notzold R (1995) Evolution of increased in invasive competitive ability nonindigenous a hypothesis plants: a hypothesis. J Ecol 83:887–889

    Article  Google Scholar 

  • Bossdorf O, Auge H, Lafuma L, Rogers WE, Siemann E, Prati D (2005) Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144:1–11

    Article  PubMed  Google Scholar 

  • Cao LJ, Wang ZH, Gong YJ, Zhu L, Hoffmann AA, Wei SJ (2017) Low genetic diversity but strong population structure reflects multiple introductions of western flower thrips (Thysanoptera: Thripidae) into China followed by human-mediated spread. Evol Appl 10:391–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chun YJ, Fumanal B, Laitung B, Bretagnolle F (2010) Gene flow and population admixture as the primary post-invasion processes in common ragweed (Ambrosia artemisiifolia) populations in France. New Phytol 185:1100–1107

    Article  PubMed  Google Scholar 

  • Chun YJ, Le Corre V, Bretagnolle F (2011) Adaptive divergence for a fitness-related trait among invasive Ambrosia artemisiifolia populations in France. Mol Ecol 20:1378–1388

    Article  PubMed  Google Scholar 

  • Ciappetta S, Ghiani A, Gilardelli F, Bonini M, Citterio S, Gentili R (2016) Invasion of Ambrosia artemisiifolia in Italy: assessment via analysis of genetic variability and herbarium data. Flora 223:106–113

    Article  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Di Rienzo A, Peterson AC, Garzat JC, Valdes AM, Slatkint M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  PubMed  PubMed Central  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  CAS  PubMed  Google Scholar 

  • Dlugosch KM, Anderson SR, Braasch J, Cang FA, Gillette HD (2015) The devil is in the details: genetic variation in introduced populations and its contributions to invasion. Mol Ecol 24:2095–2111

    Article  PubMed  Google Scholar 

  • Dong H, Zhou M, Liu Z, Hao X, Liu Y, Abdulvai A, Liu T (2017) Diffusion and intrusion features of Ambrosia artemisiifolia and Ambrosia trifida in Yili River Valley. J Arid Land Res Enviorn 11:175–180

    Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2006) Hybridization as a stimulus for the evolution of invasiveness in plants? Euphytica 148:35–46

    Article  Google Scholar 

  • Estoup A, Ravigné V, Hufbauer R, Vitalis R, Gautier M, Facon B (2016) Is there a genetic paradox of biological invasion? Annu Rev Ecol Evol Syst 47:51–72

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2006) ARLEQUIN version 3.1: a software for population genetic data analysis. Computational and molecular population genetics laboratory. Institute of Zoology, University of Berne, Bern

    Google Scholar 

  • Fischer ML, Salgado I, Beninde J et al (2017) Multiple founder effects are followed by range expansion and admixture during the invasion process of the raccoon (Procyon lotor) in Europe. Divers Distrib 23:409–420

    Article  Google Scholar 

  • Flot JF (2010) SeqPHASE: a web tool for interconverting PHASE input/output files and FASTA sequence alignments. Mol Ecol Resour 10:162–166

    Article  CAS  PubMed  Google Scholar 

  • Friedman J, Barrett SCH (2008) High outcrossing in the annual colonizing species Ambrosia artemisiifolia (Asteraceae). Ann Bot 101:1303–1309

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaudeul M, Giraud T, Kiss L, Shykoff JA (2011) Nuclear and chloroplast microsatellites show multiple introductions in the worldwide invasion history of common ragweed, Ambrosia artemisiifolia. PLoS ONE 6:e17658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gentili R, Montagnani C, Gilardelli F, Guarino MF, Citterio S (2017) Let native species take their course: Ambrosia artemisiifolia replacement during natural or “artificial” succession. Acta Oecol 82:32–40

    Article  Google Scholar 

  • Genton BJ, Shykoff JA, Giraud T (2005) High genetic diversity in French invasive populations of common ragweed, Ambrosia artemisiifolia, as a result of multiple sources of introduction. Mol Ecol 14:4275–4285

    Article  CAS  PubMed  Google Scholar 

  • Gladieux P, Giraud T, Kiss L, Genton BJ, Jonot O, Shykoff JA (2011) Distinct invasion sources of common ragweed (Ambrosia artemisiifolia) in Eastern and Western Europe. Biol Invasions 13:933–944

    Article  Google Scholar 

  • Groves RH, Burdon JJ (1986) Ecology of biological invasions: an Australian perspective. Australian Academy of Science, Canberra

    Google Scholar 

  • Guillot G, Santos F, Estoup A (2008) Analysing georeferenced population genetics data with Geneland: a new algorithm to deal with null alleles and a friendly graphical user interface. Bioinformatics 24:1406–1407

    Article  CAS  PubMed  Google Scholar 

  • Harrigan RJ, Mazza ME, Sorenson MD (2008) Computation vs cloning: evaluation of two methods for haplotype determination. Mol Ecol Resour 8:1239–1248

    Article  CAS  PubMed  Google Scholar 

  • Henry P, Le Lay G, Goudet J, Guisan A, Jahodová S, Besnard G (2009) Reduced genetic diversity, increased isolation and multiple introductions of invasive giant hogweed in the western Swiss Alps. Mol Ecol 18:2819–2831

    Article  CAS  PubMed  Google Scholar 

  • Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  CAS  PubMed  Google Scholar 

  • Jin DP, Lee JH, Xu B, Choi BH (2016) Phylogeography of East Asian Lespedeza buergeri (Fabaceae) based on chloroplast and nuclear ribosomal DNA sequence variations. J Plant Res 129:793–805

    Article  PubMed  Google Scholar 

  • Karn E, Jasieniuk M (2017) Genetic diversity and structure of Lolium perenne ssp. multiflorum in California vineyards and orchards indicate potential for spread of herbicide resistance via gene flow. Evol Appl 10:616–629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keller SR, Taylor DR (2010) Genomic admixture increases fitness during a biological invasion. J Evol Biol 23:1720–1731

    Article  CAS  PubMed  Google Scholar 

  • Keller M, Kollmann J, Edwards PJ (2000) Genetic introgression from distant provenances reduces fitness in local weed populations. J Appl Ecol 37:647–659

    Article  Google Scholar 

  • Keller SR, Fields PD, Berardi AE, Taylor DR (2014) Recent admixture generates heterozygosity-fitness correlations during the range expansion of an invading species. J Evol Biol 27:616–627

    Article  CAS  PubMed  Google Scholar 

  • Kropf M, Huppenberger AS, Karrer G (2018) Genetic structuring and diversity patterns along rivers—local invasion history of Ambrosia artemisiifolia (Asteraceae) along the Danube River in Vienna (Austria) shows non-linear pattern. Weed Res 58:131–140

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Ecol Resour 33:1870–1874

    CAS  Google Scholar 

  • Lawalrée A (1955) Note complémentaire sur les Ambrosia adventices en Europe occidentale. Bull Soc R Bot Belg 87:207–208

    Google Scholar 

  • Leberg PL (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46:477–494

    Article  PubMed  Google Scholar 

  • Li XM, Liao WJ, Wolfe LM, Zhang DY (2012) No evolutionary shift in the mating system of North American Ambrosia artemisiifolia (Aasteraceae) following its introduction to china. PLoS ONE 7:1–6

    Google Scholar 

  • Li XM, Zhang DY, Liao WJ (2015) The rhythmic expression of genes controlling flowering time in southern and northern populations of invasive Ambrosia artemisiifolia. J Plant Ecol 8:207–212

    Article  Google Scholar 

  • Li Y, Stift M, Kleunen M (2018) Admixture increases performance of an invasive plant beyond first generation heterosis. J Ecol 106:1595–1606

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Chen H, Kowarik I, Zhang Y, Wang R (2012) Plant invasions in China: an emerging hot topic in invasion science. NeoBiota 15:27–51

    Article  CAS  Google Scholar 

  • Lockwood JL, Hoopes MF, Marchetti MP (2007) Invasion ecology. Wiley, Oxford

    Google Scholar 

  • Makra L, Matyasovszky I, Hufnagel L, Tusnady G (2015) The history of ragweed in the world. Appl Ecol Env Res 13:489–512

    Google Scholar 

  • Martin MD, Chamecki M, Brush GS, Meneveau C, Parlange MB (2009) Pollen clumping and wind dispersal in an invasive angiosperm. Am J Bot 96:1703–1711

    Article  PubMed  Google Scholar 

  • Martin MD, Zimmer EA, Olsen MT, Foote AD, Gilbert MTP, Brush GS (2014) Herbarium specimens reveal a historical shift in phylogeographic structure of common ragweed during native range disturbance. Mol Ecol 23:1701–1716

    Article  PubMed  Google Scholar 

  • Martin MD, Olsen MT, Samaniego JA, Zimmer EA, Gilbert MTP (2016) The population genomic basis of geographic differentiation in North American common ragweed (Ambrosia artemisiifolia L.). Ecol Evol 6:3760–3771

    Article  PubMed  PubMed Central  Google Scholar 

  • Meyer L, Causse R, Pernin F et al (2017) New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species. PLoS ONE 12:97

    Google Scholar 

  • Molecular Ecology Resources Primer Development Consortium (MERPDC) (2009) Permanent genetic resources added to Molecular Ecology Resources database 1 January 2009–30 April 2009. Mol Ecol Resour 9:1375–1429

    Article  Google Scholar 

  • Montagnani C, Gentili R, Smith M, Guarino MF, Citterio S (2017) The worldwide spread, success, and impact of ragweed (Ambrosia spp.). Crit Rev Plant Sci 36:139–178

    Article  Google Scholar 

  • Müller-Schärer H, Schaffner U, Steinger T (2004) Evolution in invasive plants: implications for biological control. Trends Ecol Evol 19:417–422

    Article  PubMed  Google Scholar 

  • Naegele RP, Tomlinson AJ, Hausbeck MK (2015) Evaluation of a diverse, worldwide collection of wild, cultivated, and landrace pepper (Capsicum annuum) for resistance to phytophthora fruit rot, genetic diversity, and population structure. Phytopathology 105:110–118

    Article  CAS  PubMed  Google Scholar 

  • Nei M, Maruyama T, Chakraborty R (1975) The bottleneck effect and genetic variability in populations. Evolution 29:1–10

    Article  PubMed  Google Scholar 

  • Pagad S, Genovesi P, Carnevali L, Schigel D, McGeoch MA (2018) Data descriptor: introducing the global register of introduced and invasive species. Sci Data 5:170202

    Article  PubMed  PubMed Central  Google Scholar 

  • Pairon M, Petitpierre B, Campbell M et al (2010) Multiple introductions boosted genetic diversity in the invasive range of black cherry (Prunus serotina; Rosaceae). Ann Bot 105:881–890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks DH, Mankowski T, Zangooei S et al (2013) GenGIS 2: geospatial analysis of traditional and genetic biodiversity, with new gradient algorithms and an extensible plugin framework. PLoS ONE 8:e69885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel population genetic software for teaching and research. Mol Ecol Resour 6:288–295

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 65: genetic analysis in excel population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pointier J, Jarne P, Sarda V, David P, Spe I (2008) Report high genetic variance in life-history strategies within invasive populations by way of multiple introductions. Curr Biol 18:363–367

    Article  CAS  PubMed  Google Scholar 

  • Polzin T, Daneshmand SV (2003) On Steiner trees and minimum spanning trees in hypergraphs. Oper Res Lett 31:12–20

    Article  Google Scholar 

  • Prentis PJ, Wilson JRU, Dormontt EE, Richardson DM, Lowe AJ (2008) Adaptive evolution in invasive species. Trends Plant Sci 13:288–294

    Article  CAS  PubMed  Google Scholar 

  • Priszter S (1960) Adventív gyomnövényeink terjedése. Mezögazdasági Kiadó Agricultural Publishing Ltd, Budapest

    Google Scholar 

  • Pritchard J, Wen X, Falush D (2010) Documentation for STRUCTURE software, version 23. University of Chicago, Chicago

    Google Scholar 

  • Pyšek P, Pergl J, Essl F et al (2017) Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89:203–274

    Article  Google Scholar 

  • Rius M, Darling JA (2014) How important is intraspecific genetic admixture to the success of colonising populations? Trends Ecol Evol 29:233–242

    Article  PubMed  Google Scholar 

  • Roman J, Darling JA (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  PubMed  Google Scholar 

  • Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Resour 4:137–138

    Article  Google Scholar 

  • Schierenbeck KA, Ellstrand NC (2009) Hybridization and the evolution of invasiveness in plants and other organisms. Biol Invasions 11:1093–1105

    Article  Google Scholar 

  • Shi J, Macel M, Tielbörger K, Verhoeven KJ (2018) Effects of admixture in native and invasive populations of Lythrum salicaria. Biol Invasions 20:2381–2393

    Article  PubMed  PubMed Central  Google Scholar 

  • Signorile AL, Lurz PWW, Wang J, Reuman DC, Carbone C (2016) Mixture or mosaic? Genetic patterns in UK grey squirrels support a human-mediated “long-jump” invasion mechanism. Divers Distrib 22:566–577

    Article  Google Scholar 

  • Stephens M, Donnelly P (2003) A comparison of bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephens M, Smith NJ, Donnelly P (2001) A new statistical method for haplotype reconstruction from population data. Am J Hum Genet 68:978–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • The People’s Government of Meizhou (2016) Meizhou overview. https://www.meizhou.gov.cn/zjmz/mzgk/mzgk1/t20160825_130.htm. Accessed 12 Dec 2018

  • Tsutsui K, Suwa A, Sawada KI, Kato T, Ohsawa TA, Watano Y (2009) Incongruence among mitochondrial, chloroplast and nuclear gene trees in Pinus subgenus Strobus (Pinaceae). J Plant Res 122:509–521

    Article  CAS  PubMed  Google Scholar 

  • van Boheemen LA, Lombaert E, Nurkowski KA et al (2017) Multiple introductions, admixture and bridgehead invasion characterize the introduction history of Ambrosia artemisiifolia in Europe and Australia. Mol Ecol 26:5421–5434

    Article  PubMed  Google Scholar 

  • van Kleunen M, Bossdorf O, Dawson W (2018) The ecology and evolution of alien plants. Annu Rev Ecol Evol Syst 49:25–47

    Article  Google Scholar 

  • Verhoeven KJ, Macel M, Wolfe LM, Biere A (2010) Population admixture, biological invasions and the balance between local adaptation and inbreeding depression. Proc R Soc B 278:2–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Wan FH, Guo JY, Zhang F (2009) Research on biological invasions in China. Science Press, Beijing

    Google Scholar 

  • Wan F, Jiang M, Zhan A (2017) Biological invasions and its management in china, vol 2. Springer, Singapore

    Book  Google Scholar 

  • Wang MY (2005) Current situation of common ragweed and control strategy. J Anhui Agric Sci 33:1771–1786

    Google Scholar 

  • Wang J, Wu Y, Ren G, Guo Q, Liu J, Lascoux M (2011) Genetic differentiation and delimitation between ecologically diverged Populus euphratica and P. pruinosa. PLoS ONE 6:e26530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  PubMed Central  Google Scholar 

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou ZS, Guo JY, Wan FH (2015) Ambrosia artemisiifolia L. In: Wan FH, Hou YM, Jiang MX (eds) Invasion biology. Science Press, Beijing, pp 182–185

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Michael D. Martin at the Centre for GeoGenetics, Natural History Museum of Denmark for providing haplotypes sequences from the 45 North American extant populations and historical Ambrosia artemisiifolia herbarium specimen.

Funding

This work was financially supported by grants from The National Key Research and Development Program of China 2016YFC1201100, 2017YFC0506200, and The National Natural Science Foundation of China 41701026.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caiyun Zhao or Junsheng Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., van Kleunen, M., Li, J. et al. Patterns of genetic variation reflect multiple introductions and pre-admixture sources of common ragweed (Ambrosia artemisiifolia) in China. Biol Invasions 21, 2191–2209 (2019). https://doi.org/10.1007/s10530-019-01966-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-019-01966-2

Keywords

Navigation