Skip to main content
Log in

A dynamic energy budget model to describe the reproduction and growth of invasive starfish Asterias amurensis in southeast Australia

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

The introduction of alien species is a global phenomenon that alters ecosystems structure and functioning. Invasive species are responsible for substantial economic and ecological losses. Invasive species impact resource availability, outcompeting and even causing extinction of native species. The management of invasive species requires knowledge on the ecology, physiology and population dynamics of these species. In a world where environmental conditions are changing fast due to global climate change and other anthropogenic stressors, a more comprehensive knowledge of the life history and physiology of these species is urgently needed. The DEB theory is unique in capturing the metabolic processes of an organism through its entire life cycle, and thus, is a useful tool to model lifetime feeding, growth, reproduction, and responses to changes in biotic and abiotic conditions. In this work, we estimated the parameters of a DEB model for Asterias amurensis. This starfish was introduced in Tasmania and is considered the most serious marine pest in Australia where it has caused local extinctions of several species. Asterias amurensis is a major predator and is a keystone species exerting top-down control of its prey populations by achieving large densities. We determined the influence of biotic and abiotic factors on the performance of A. amurensis. The DEB model presented here includes energy handling rules to describe gonad and pyloric caeca cycles. Model parameters were used to explore population dynamics of populations of A. amurensis in Australia. The DEB model allowed us to characterise the ecophysiology of A. amurensis, providing new insights on the role of food availability and temperature on its life cycle and reproduction strategy. Moreover it is a powerful tool for risk management of already established invasive populations and of regions with a high invasion risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agüera A (2015) The role of starfish (Asterias rubens) predation in blue mussel (Mytilus edulis) seedbed stability. Wageningen University. Ph.D. thesis

  • Agüera A, Trommelen M, Burrows F et al (2012) Winter feeding activity of the common starfish (Asterias rubens L.): the role of temperature and shading. J Sea Res 72:106–112. https://doi.org/10.1016/j.seares.2012.01.006

    Google Scholar 

  • Agüera A, Collard M, Jossart Q et al (2015) Parameter estimations of dynamic energy budget (DEB) model over the life history of a key Antarctic species: the Antarctic sea star Odontaster validus Koehler, 1906. PLoS ONE 10:e0140078. https://doi.org/10.1371/journal.pone.0140078

    PubMed  PubMed Central  Google Scholar 

  • Arthur T, Summerson R, Mazur K (2015) A comparison of the costs and effectiveness of prevention, eradication, containment and asset protection of invasive marine species incursions. ABARES Report, Canberra

    Google Scholar 

  • Augustine S, Lika K, Kooijman SALM (2017) Comment on the ecophysiology of the Greenland shark, Somniosus microcephalus. Polar Biol. https://doi.org/10.1007/s00300-017-2154-8

    Article  Google Scholar 

  • Babcock RC, Milton DA, Pratchett MS (2016) Relationships between size and reproductive output in the crown-of-thorns starfish. Mar Biol 163:234. https://doi.org/10.1007/s00227-016-3009-5

    Google Scholar 

  • Bacher C, Gangnery A (2006) Use of dynamic energy budget and individual based models to simulate the dynamics of cultivated oyster populations. J Sea Res 56:140–155. https://doi.org/10.1016/j.seares.2006.03.004

    Google Scholar 

  • Barker MF, Nichols D (1983) Reproduction, recruitment and juvenile ecology of the starfish, Asterias rubens and Mathasterias glacialis. J Mar Biol Assoc U K 63:745–765. https://doi.org/10.1017/S0025315400071198

    Google Scholar 

  • Bax N, Dunstan P, Gunasekera R, et al (2006) Evaluation of national control plan management options for the North Pacific seastar Asterias amurensis. CSIRO Marine Research Report

  • Briggs CF (1983) A study of some sublittoral populations of Asterias rubens (L.) and their prey. University of Liverpool. Ph.D. thesis

  • Bruce BD (1998) A summary of CSIRO studies on the larval ecology of Asterias amurensis. In: Goggin CL (ed) Proceedings of a meeting on the biology and management of the introduced seastar Asterias amurensis in Australian Waters. Centre for Research on Introduced Marine Pests Technical Report Number 15, CSIRO Division of Fisheries, Hobart, Tasmania, Australia, pp 36–41

  • Bruce BD, Sutton CA, Lyne V (1995) Laboratory and field studies of the larval distribution and duration of the introduced seastar Asterias amurensis with updated and improved prediction of the species spread based on a larval dispersal model. CSIRO Division of Fisheries Report

  • Byrne M, Morrice MG, Wolf B (1997) Introduction of the northern Pacific asteroid Asterias amurensis to Tasmania: reproduction and current distribution. Mar Biol 127:673–685. https://doi.org/10.1007/s002270050058

    Google Scholar 

  • Byrne M, O’Hara TD, Lawrence JM (2013) Asterias amurensis. In: Lawrence JM (ed) Starfish: biology and ecology of the Asteroidea. John Hopkins University Press, Baltimore, pp 174–180

    Google Scholar 

  • Byrne M, Gall M, Wolfe K, Agüera A (2016) From pole to pole: the potential for the Arctic seastar Asterias amurensis to invade a warming Southern Ocean. Glob Change Biol 22:3874–3887. https://doi.org/10.1111/gcb.13304

    Google Scholar 

  • Calderwood J, O’Connor NE, Roberts D (2016) Efficiency of starfish mopping in reducing predation on cultivated benthic mussels (Mytilus edulis Linnaeus). Aquaculture 452:88–96. https://doi.org/10.1016/j.aquaculture.2015.10.024

    Google Scholar 

  • Ehrenfeld JG (2010) Ecosystem consequences of biological invasions. Annu Rev Ecol Evol Syst 41:59–80. https://doi.org/10.1146/annurev-ecolsys-102209-144650

    Google Scholar 

  • Elzhov TV, Mullen KM, Spiess A-N, Bolker B (2013) minpack.lm: R interface to the Levenberg–Marquardt nonlinear least-squares algorithm found in MINPACK, plus support for bounds. https://CRAN.R-project.org/package=minpack.lm

  • Freitas V, Cardoso JFMF, Lika K et al (2010) Temperature tolerance and energetics: a dynamic energy budget-based comparison of North Atlantic marine species. Philos Trans R Soc B Biol Sci 365:3553–3565. https://doi.org/10.1098/rstb.2010.0049

    Google Scholar 

  • Guillou M, Joly-Turquin G, Leyzour S et al (2012) Factors controlling juvenile growth and population structure of the starfish Asterias rubens in intertidal habitats: field and experimental approaches. J Mar Biol Assoc U K 92:367–378. https://doi.org/10.1017/S0025315411001020

    Google Scholar 

  • Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435. https://doi.org/10.1111/ele.12189

    PubMed  PubMed Central  Google Scholar 

  • Harrold C, Pearse JS (1980) Allocation of pyloric caecum reserves in fed and starved sea stars, Pisaster giganteus (Stimpson): somatic maintenance comes before reproduction. J Exp Mar Bio Ecol 48:169–183. https://doi.org/10.1016/0022-0981(80)90015-5

    Google Scholar 

  • Hatanaka M, Kosaka M (1958) Biological studies on the population of the starfish Asterias amurensis in Sendai Bay. Tohoku J Agric Res 9:159–178

    Google Scholar 

  • Huret M, Vandromme P, Petitgas P, Pecquerie L (2012) Connectivity patterns of anchovy larvae in the Bay of Biscay from a coupled transport-bioenergetic model forced by size-structured zooplankton. In: ICES-CIEM annual science conference. Bergen, p 14

  • Jangoux M, van Impe E (1977) The annual pyloric cycle of Asterias rubens L. (echinodermata: Asteroidea). J Exp Mar Bio Ecol 30:165–184. https://doi.org/10.1016/0022-0981(77)90010-7

    Google Scholar 

  • Jangoux M, Vloebergh M (1973) Contribution a l’étude du cycle annuel de reproduction d’une population d’Asterias rubens (Echinodermata, Asteroidea) du littoral belge. Neth J Sea Res 6:389–408. https://doi.org/10.1016/0077-7579(73)90024-0

    Google Scholar 

  • Jusup M, Klanjscek T, Matsuda H, Kooijman SALM (2011) A full lifecycle bioenergetic model for bluefin tuna. PLoS ONE 6:e21903. https://doi.org/10.1371/journal.pone.0021903

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jusup M, Klanjšček T, Matsuda H (2014) Simple measurements reveal the feeding history, the onset of reproduction, and energy conversion efficiencies in captive bluefin tuna. J Sea Res 94:144–155. https://doi.org/10.1016/j.seares.2014.09.002

    Google Scholar 

  • Jusup M, Sousa T, Domingos T et al (2017) Science direct physics of metabolic organization. Phys Life Rev 20:1–39. https://doi.org/10.1016/j.plrev.2016.09.001

    PubMed  Google Scholar 

  • Kashenko SD (2005) Development of the starfish Asterias amurensis under laboratory conditions. Russ J Mar Biol 31:36–42. https://doi.org/10.1007/s11179-005-0041-6

    Google Scholar 

  • Kearney M, Porter W (2009) Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol Lett 12:334–350. https://doi.org/10.1111/j.1461-0248.2008.01277.x

    PubMed  Google Scholar 

  • Kearney M, Simpson SJ, Raubenheimer D, Helmuth B (2010a) Modelling the ecological niche from functional traits. Philos Trans R Soc B Biol Sci 365:3469–3483. https://doi.org/10.1098/rstb.2010.0034

    Google Scholar 

  • Kearney MR, Wintle BA, Porter WP (2010b) Correlative and mechanistic models of species distribution provide congruent forecasts under climate change. Conserv Lett 3:203–213. https://doi.org/10.1111/j.1755-263X.2010.00097.x

    Google Scholar 

  • Kooijman SALM (2010) Dynamic energy budget theory for metabolic organisation, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kooijman SALM (2014) Metabolic acceleration in animal ontogeny: an evolutionary perspective. J Sea Res 94:128–137. https://doi.org/10.1016/j.seares.2014.06.005

    Google Scholar 

  • Kuris AM, Lafferty KD, Grygier MJ (1996) Detection and preliminary evaluation of natural enemies for possible biological control of the Northern Pacific seastar, Asterias amurensis. Centre for Research on Introduced Marine Pests, Report #3

  • Lika K, Kearney MR, Freitas V et al (2011a) The “covariation method” for estimating the parameters of the standard dynamic energy budget model I: philosophy and approach. J Sea Res 66:270–277. https://doi.org/10.1016/j.seares.2011.07.010

    Google Scholar 

  • Lika K, Kearney MR, Kooijman SALM (2011b) The “covariation method” for estimating the parameters of the standard dynamic energy budget model II: properties and preliminary patterns. J Sea Res 66:278–288. https://doi.org/10.1016/j.seares.2011.09.004

    Google Scholar 

  • Liu L, Piper B (2016) Predicting the total economic impacts of invasive species: the case of B. rubostriata (red streaked leafhopper). Ecol Econ 128:139–146. https://doi.org/10.1016/j.ecolecon.2016.04.014

    Google Scholar 

  • Lockhart SJ, Ritz DA (2001) Preliminary observations of the feeding periodicity and selectivity of the introduced seastar, Asterias amurensis, in Tasmania, Australia. Pap Proc R Soc Tasmania 135:25–33

    Google Scholar 

  • Lowe S, Browne M, Boudjelas S, De Poorter M (2004) 100 of the world’s worst invasive alien species: A selection from the global invasive database, November 2. The invasive Species Specialist Group (ISSG) a specialist group of th Species Survival Commission (SSC) of the World Conservation Union (IUCN)

  • Marn N, Jusup M, Legović T et al (2017) Environmental effects on growth, reproduction, and life-history traits of loggerhead turtles. Ecol Modell 360:163–178. https://doi.org/10.1016/j.ecolmodel.2017.07.001

    Google Scholar 

  • Maury O, Faugeras B, Shin Y-J et al (2007) Modeling environmental effects on the size-structured energy flow through marine ecosystems. Part 1: the model. Prog Oceanogr 74:479–499. https://doi.org/10.1016/j.pocean.2007.05.002

    Google Scholar 

  • Menge BA (1982) Effects of feeding on the environment: Asteroidea. In: Jangoux M, Lawerence JM (eds) Echinoderm nutrition. AA Balkema Publishers, Rotterdam, pp 521–551

    Google Scholar 

  • Monaco CJ, Wethey DS, Helmuth B (2014) A dynamic energy budget (DEB) model for the Keystone Predator Pisaster ochraceus. PLoS ONE 9:e104658. https://doi.org/10.1371/journal.pone.0104658

    PubMed  PubMed Central  Google Scholar 

  • Morris AE (2002) Early life history of the introduced seastar Asterias amurensis in the Derwent estuary, Tasmania: the potential for ecology-based management. University of Tasmania. Ph.D. thesis

  • Nauen CE (1978) The growth of the sea star, Asterias rubens, and its role as benthic predator in Kiel Bay. Kiel Meeresforsch 4:68–81

    Google Scholar 

  • Paik S-G, Park H-S, Yi SK, Yun SG (2005) Developmental duration and morphology of the sea star Asterias amurensis, in Tongyeong, Korea. Ocean Sci J 40:65–70. https://doi.org/10.1007/BF03022611

    Google Scholar 

  • Parry GD, Cohen BF (2001) The distribution, abundance and population dynamics of the exotic seastar Asterias amurensis during the first three years of its invasion of port Phillip Bay. Marine and Freshwater Resources Institute Report No 33

  • Pecquerie L, Petitgas P, Kooijman SALM (2009) Modeling fish growth and reproduction in the context of the dynamic energy budget theory to predict environmental impact on anchovy spawning duration. J Sea Res 62:93–105. https://doi.org/10.1016/j.seares.2009.06.002

    Google Scholar 

  • Pecquerie L, Fablet R, De Pontual H et al (2012) Reconstructing individual food and growth histories from biogenic carbonates. Mar Ecol Prog Ser 447:151–164. https://doi.org/10.3354/meps09492

    Google Scholar 

  • Pereyra PJ (2016) Revisiting the use of the invasive species concept: an empirical approach. Austral Ecol 41:519–528. https://doi.org/10.1111/aec.12340

    Google Scholar 

  • Propp MV, Ryabushko VI, Zhuchikhina AA, Propp LN (1983) Seasonal changes in respiration, ammonia and phosphate excretion, and activity of carbohydrate-metabolism enzymes in four echinoderm species from the sea of Japan. Comp Biochem Physiol Part B Comp Biochem 75:707–711. https://doi.org/10.1016/0305-0491(83)90122-0

    Google Scholar 

  • R Core Team (2014) R: a language and environment for statistical computing. the R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

  • Richardson MF, Sherman CDH, Lee RS et al (2016) Multiple dispersal vectors drive range expansion in an invasive marine species. Mol Ecol 25:5001–5014. https://doi.org/10.1111/mec.13817

    PubMed  CAS  Google Scholar 

  • Ross DJ, Johnson CR, Hewitt CL (2003) Assessing the ecological impacts of an introduced seastar: the importance of multiple methods. Biol Invasions 5:3–21. https://doi.org/10.1023/A:1024019428616

    Google Scholar 

  • Ross DJ, Johnson CR, Hewitt CL, Ruiz GM (2004) Interaction and impacts of two introduced species on a soft sediment marine assemblage in Tasmania. Mar Biol 144:747–756. https://doi.org/10.1007/s00227-003-1223-4

    Google Scholar 

  • Sarà G, Palmeri V, Rinaldi A et al (2013) Predicting biological invasions in marine habitats through eco-physiological mechanistic models: a case study with the bivalve Brachidontes pharaonis. Divers Distrib 19:1235–1247. https://doi.org/10.1111/ddi.12074

    Google Scholar 

  • Saraiva S, van der MM, Kooijman SALM et al (2012) Validation of a dynamic energy budget (DEB) model for the blue mussel Mytilus edulis. Mar Ecol Prog Ser 463:141–158. https://doi.org/10.3354/meps09801

    Google Scholar 

  • Sloan NA, Aldridge TH (1981) Observations on an aggregation of the starfish Asterias rubens L. in Morecambe Bay, Lancashire, England. J Nat Hist 15:407–418. https://doi.org/10.1080/00222938100770311

    Google Scholar 

  • Smith GFM (1940) Factors limiting distribution and size in the starfish. J Fish Res Board Can 5a:84–103. https://doi.org/10.1139/f40-010

    Google Scholar 

  • Thomas Y, Garen P, Pouvreau S (2011a) Application of a bioenergetic growth model to larvae of the pearl oyster Pinctada margaritifera L. J Sea Res 66:331–339. https://doi.org/10.1016/j.seares.2011.04.005

    Google Scholar 

  • Thomas Y, Mazurié J, Alunno-Bruscia M et al (2011b) Modelling spatio-temporal variability of Mytilus edulis (L.) growth by forcing a dynamic energy budget model with satellite-derived environmental data. J Sea Res 66:308–317. https://doi.org/10.1016/j.seares.2011.04.015

    Google Scholar 

  • Uthicke S, Schaffelke B, Byrne M (2009) A boom–bust phylum? ecological and evolutionary consequences of density variations in echinoderms. Ecol Monogr 79:3–24. https://doi.org/10.1890/07-2136.1

    Google Scholar 

  • van der Meer J (2006) An introduction to dynamic energy budget (DEB) models with special emphasis on parameter estimation. J Sea Res 56:85–102. https://doi.org/10.1016/j.seares.2006.03.001

    Google Scholar 

  • van der Meer J, Kooijman SALM (2014) Inference on energetics of deep-sea fish that cannot be aged: the case of the hagfish. J Sea Res 94:138–143. https://doi.org/10.1016/j.seares.2014.07.007

    Google Scholar 

  • van der Veer HW, Cardoso JFMF, van der Meer J (2006) The estimation of DEB parameters for various Northeast Atlantic bivalve species. J Sea Res 56:107–124. https://doi.org/10.1016/j.seares.2006.03.005

    Google Scholar 

  • Walsh JR, Carpenter SR, Vander Zanden MJ, Vander Zander MJ (2016) Invasive species triggers a massive loss of ecosystem services through a trophic cascade. Proc Natl Acad Sci 113:4081–4085. https://doi.org/10.1073/pnas.1600366113

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wares JP (2001) Biogegraphy of Asterias: North Atlantic climate change and speciation. Biol Bull 201:95–103. https://doi.org/10.2307/1543530

    PubMed  CAS  Google Scholar 

  • Watts S, Lawrence JM (1990) The effect of temperature and salinity interactions on righting, feeding and growth in the sea star Luidia clathrata (Say). Mar Freshw Behav Physiol 17:159–165. https://doi.org/10.1080/10236249009378765

    Google Scholar 

  • Whitehead J (2008) Derwent estuary introduced marine and intertidal species: review of distribution, issues, recent actions and management options. Derwent Stuary Program, Tasmania

    Google Scholar 

  • Witman JD, Genovese SJ, Bruno JF et al (2003) Massive prey recruitment and the control of rocky subtidal communities on large spatial scales. Ecol Monogr 73:441–462. https://doi.org/10.1890/01-4073

    Google Scholar 

  • Wood SN (2006) Generalized additive models: an introduction with r, 2nd edn. Chapman & Hall/CRC, Boca Raton

    Google Scholar 

Download references

Acknowledgements

Thanks to Dr. Patti Virtue for assistance in collecting specimens. We also thank two anonymous reviewers and the handling editor for their comments and suggestions which helped to improve this manuscript. This is contribution number 218 of the Sydney Institute of Marine Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Agüera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 813 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agüera, A., Byrne, M. A dynamic energy budget model to describe the reproduction and growth of invasive starfish Asterias amurensis in southeast Australia. Biol Invasions 20, 2015–2031 (2018). https://doi.org/10.1007/s10530-018-1676-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-018-1676-5

Keywords

Navigation