Skip to main content
Log in

Potential allelopathic effects of the tropical legume Sesbania virgata on the alien Leucaena leucocephala related to seed carbohydrate metabolism

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Allelopathy has been considered a key mechanism to explain the invasiveness of some species. It is well known that invasive plants can affect native plants by producing novel allelochemicals but some exotic plant species may be also sensitive to allelochemicals released by native species, providing a tool to reduce growth and impacts of invasive exotic species. Here, using growth chamber experiments we tested the mutual potential allelopathic effects of Sesbania virgata (a native dominant species) and the alien Leucaena leucocephala seeds. S. virgata was unaffected by seed leachates of L. leucocephala, indicating that, under lab conditions, this legume presents resistance to the phytotoxic compounds produced by seeds of this alien species. In contrast, germination and seedling growth of L. leucocephala were strongly affected by the phytochemicals produced by seeds of S. virgata. A delay in endospermic mobilization of storage carbohydrates (raffinose-family oligosaccharides and galactomannan) was observed in the alien species. These potential allelopathic effects could not be attributed sole to the presence neither of the phytoxic catechin nor of ABA in seed leachates of S. virgata. Our findings indicate that the in vitro behavior of S. virgata is consistent with its aggressiveness in natural environment and suggest sesbanimide as a potential candidate as implicated in the noxious effects of S. virgata on the alien species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amaral LIV, Costa PMF, Aidar APM, Gaspar M, Buckeridge MS (2007) A new rapid and sensitive enzymatic method for extraction and quantification of starch in plant material. Hoehnea 34:425–431. doi:10.1590/S2236-89062007000400001

  • Bewley JD, Bradford KJ, Hilhorst HWM, Nonogaki H (2013) Seeds: physiology of development germination and dormancy, 3rd edn. Springer, New York, pp 203–208. doi:10.1007/978-1-4614-4693-4

    Book  Google Scholar 

  • Blair AC, Hanson BD, Brunk GR, Marrs RA, Westra P, Nissen SJ, Hufbauer RA (2005) New techniques and findings in the study of a candidate allelochemical implicated in invasion success. Ecol Lett 10:1039–1047. doi:10.1111/j.1461-0248.2005.00805.x

    Google Scholar 

  • Blair AC, Nissen SJ, Brunk GR, Hufbauer RA (2006) A lack of evidence for an ecological role of the putative allelochemical (±)-catechin in spotted knapweed invasion success. J Chem Ecol 32:2327–2331. doi:10.1007/s10886-006-9168-y

    CAS  PubMed  Google Scholar 

  • Blair AC, Weston LA, Nissen SJ, Brunk GR, Hufbauer RA (2009) The importance of analytical techniques in allelopathy studies with the reported allelochemical catechin as an example. Biol Invasions 11:325–332. doi:10.1007/s10530-008-9250-1

    Google Scholar 

  • Bongard C (2012) A review of the influence of root-associating fungi and root exudates on the success of invasive plants. NeoBiota 14:21–45. doi:10.3897/neobiota.14.2927

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantitis of protein utilizing the principle of protein-dye binding. Ann Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3

    CAS  Google Scholar 

  • Buckeridge MS, Dietrich SMC (1990) Galactomannan from Brazilian legume seeds. Rev Bras Bot 13:109–112

    Google Scholar 

  • Buckeridge MS, Dietrich SMC (1996) Mobilisation of the raffinose family oligosacharides and galactomannan in germinating seeds of Sesbania marginata Benth. (Leguminosae-Faboideae). Plant Sci 117:33–43. doi:10.1016/0168-9452(96)04410-x

    CAS  Google Scholar 

  • Buckeridge MS, Dietrich SMC, De Lima DU (2000) Galactomannans as the reserve carbohydrate in legume seeds. Carbohydrate reserves in plants-synthesis and regulation. Develop Crop Sci 26:283–316. doi:10.1016/0168-9452(96)04410-x

    Google Scholar 

  • Caccere R, Teixeira SP, Centeno DC, Figueiredo-Ribeiro RCL, Braga MR (2013) Metabolic and structural changes during early maturation of Inga vera seeds are consistent with the lack of a desiccation phase. J Plant Physiol 170:791–800. doi:10.1016/j.jplph.2013.01.002

    CAS  PubMed  Google Scholar 

  • Callaway RM, Aschehoug (2000) Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science 290:521–523. doi:10.1126/science.290.5491.521

  • Callaway RM, Ridenour WM (2004) Novel weapons: a biochemically-based hypothesis for invasive success and the evolution of increased competitive ability. Front Ecol Environ 2:436–443. doi:10.1890/1540-9295(2004)002[0436:NWISAT]2.0.CO;2

  • Carvalho CP, Hayashi AH, Braga MR, Nievola CC (2013) Biochemical and anatomical responses related to the in vitro survival of the tropical bromeliad Nidularium minutum to low temperatures. Plant Physiol Bioch 71:144–154. doi:10.1016/j.plaphy.2013.07.005

    CAS  Google Scholar 

  • Ceballos L, Hossaert-Mckey M, Mckey D, Andary C (1998) Rapid deployment of allelochemicals in exudates of germinating seeds of Sesbania (Fabaceae): roles of seed anatomy and histolocalization of polyphenolic compounds in anti-pathogen defense of seedlings. Chemoecology 8:141–151. doi:10.1007/s000490050019

    CAS  Google Scholar 

  • Chobot V, Huber C, Trettenhahn G, Hadacek F (2009) (+/−)-catechin: chemical weapon, antioxidant, or stress regulator? J Chem Ecol 35:980–996. doi:10.1007/s10886-009-9681-x

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christina M, Rouifed S, Puijalon S, Vallier F, Meiffren G, Bellvert F, Piola F (2015) Allelopathic effect of a native species on a major plant invader in Europe. Sci Nat 102:1. doi:10.1007/s00114-015-1263-x

    CAS  Google Scholar 

  • Coelho LCS (2014) Potencial alelopático in vitro dos exsudatos de Sesbania virgata (cav.) pers. sobre tomate e arroz e em fungos micorrízicos arbusculares na fase assimbiótica. Ph.D. thesis State University of Campinas

  • Coutinho MP, Carneiro JGA, Barroso DG, Rodrigues LA, Figueiredo FAMMA, Mendonça AVR, Novaes AB (2005) Growth of seedlings of Sesbania virgata (Cav.) Pers. planted on degraded area by clay extraction. Floresta 35:231–239. doi:10.5380/rf.v35i2.4608

    Google Scholar 

  • Crounse RJ, Maxwell JD, Blank H (1962) Inhibition of growth of hair by mimosine. Nature 194:194–195. doi:10.1038/194694b0

    Google Scholar 

  • Cummings JA, Parker IM, Gilbert GS (2012) Allelopathy: a tool for weed management in forest restoration. Plant Ecol 213:1975–1989. doi:10.1007/s11258-012-0154-x

    Google Scholar 

  • De Souza VC, Agra PFM, Andrade LA, Oliveira IG, De Oliveira LS (2010) Germination of seeds of the invasive plant Sesbania virgata (Cav.) Pers. under effects of light, temperature, and dormancy overcoming. Ciências Agrárias 31:889–894. doi:10.5433/1679-0359.2010v31n4p889

    Google Scholar 

  • Del Fabbro C, Gusewell S, Prati D (2014) Allelopathic effects of three plant invaders on germination of native species: a field study. Biol Invasions 16:1035–1042. doi:10.1007/s10530-013-0555-3

    Google Scholar 

  • Dirk LMA, Van der Krol AR, Vreugdenhil D, Hilhorst HWM, Bewley JD (1999) Galactomannan, soluble sugar and starch mobilization following germination of Trigonella foenum-graecum seeds. Plant Physiol Biochem 37:41–50. doi:10.1016/S0981-9428(99)80065-5

    CAS  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356. doi:10.1021/ac60111a017

    CAS  Google Scholar 

  • El Id VL, Da Costa BV, Mignoni DSB, Veronesi MB, Simoões K, Braga MR, Dos Santos NA Jr (2015) Phytotoxic effect of Sesbania virgata (Cav.) Pers. on seeds of agronomic and forestry species. J For Res 26:339–346. doi:10.1007/s11676-015-0026-z

    Google Scholar 

  • Feria MJ, Lopez ZF, Garcia JC, Perez A, Zamudio MAM, Alfaro A (2011) Valorization of Leucaena leucocephala for energy and chemicals from auto-hydrolysis. Biomass Bioenerg 35:2224–2233. doi:10.1016/j.biombioe.2011.02.038

    CAS  Google Scholar 

  • Ferreira DF (2011) Sisvar: a computer statistical analysis system. Cienc Agrotec 35:1039–1042. doi:10.1590/S1413-70542011000600001

    Google Scholar 

  • Fitter A (2003) Ecology. Making allelopathy respectable. Science 301:1337–1338. doi:10.1126/science.1089291

    CAS  PubMed  Google Scholar 

  • GISP Programme Contribution to the Global Invasive Species (2004) Tropical Asia Invaded: The growing danger of invasive alien species. The Global Invasive Species Programme pp. 80

  • Gomes M, Garcia Q (2013) Reactive oxygen species and seed germination. Biologia 68:351–357. doi:10.2478/s11756-013-0161-y

    CAS  Google Scholar 

  • Gorst-Allman CP, Steyn PS, Vleggaar R, Grobbelaar N (1984) Structure elucidation of sesbanimide using high field RMN spectroscopy. J Chem Soc 1:1311–1314. doi:10.1039/P19840001311

    Google Scholar 

  • Harun MAYA, Robinson RW, Johnson J, Uddin MN (2014) Allelopathic potential of Chrysanthemoides monilifera subsp. monilifera (boneseed): a novel weapon in the invasion processes. S Afr J Bot 93:157–166. doi:10.1016/j.sajb.2014.04.008

    Google Scholar 

  • He W-M, Feng Y, Ridenour WM, Thelen GC, Pollock JL, Diaconu A, Callaway RM (2009) Novel weapons and invasions: biogeographic differences in the competitive effects of Centaurea maculosa and its root exudates (+)-catechin. Oecologia 159:803–815. doi:10.1007/s00442-008-1234-4

    PubMed  Google Scholar 

  • Hierro J, Callaway R (2003) Allelopathy and exotic plant invasion. Plant Soil 256:29–39. doi:10.1023/A:1026208327014

    CAS  Google Scholar 

  • Hoffmann JH, Moran VC (1998) The population dynamics of an introduced tree, Sesbania punicea, in South Africa, in response to long-term damage caused by different combinations of three species of biological control agents. Oecologia 114:343–348. doi:10.1007/s004420050456

    CAS  PubMed  Google Scholar 

  • Inderjit, Duke SO (2003) Ecophysiological aspects of allelopathy. Planta 217:529–539. doi:10.1007/s00425-003-1054-z

  • Inderjit, Wardle DA, Karban R, Callaway RM (2011) The ecosystem and evolutionary contexts of allelopathy. Trends Ecol Evol 26:655–662. doi:10.1016/j.tree.2011.08.003

  • Jefferson LV, Pennacchio M (2003) Allelopathic effects of foliage extracts from four Chenopodiaceae species on seed germination. J Arid Environ 55:275–285. doi:10.1016/S0140-1963(03)00028-4

    Google Scholar 

  • Kim YOK, Lee EJ (2011) Comparison of phenolic compounds and the effects of invasive and native species in East Asia: support for the novel weapons hypothesis. Ecol Res 26:87–94. doi:10.1007/s11284-010-0762-7

    Google Scholar 

  • Kissmann KG, Groth D (1999) Infesting and noxious plants, 1st edn. Brazilian BASF, São Paulo, pp 770–776

    Google Scholar 

  • Lara-Núñez A, Sánchez-Nieto S, Anaya AL, Cruz Ortega R (2009) Phytotoxic effects of Sicyos deppei (Cucurbitaceae) in germinating tomato seeds. Physiol Plant 136:180–192. doi:10.1111/j.1399-3054.2009.01228.x

    PubMed  Google Scholar 

  • Leduc SNM, Silva JPN, Gaspar M, Barbedo CJ, Figueiredo-Ribeiro RCL (2012) Non-structural carbohydrates of immature seeds of Caesalpinia echinata (Leguminosae) are involved in the induction of desiccation tolerance. Aust J Bot 60:42–48. doi:10.1071/BT11236

    CAS  Google Scholar 

  • Lind E, Parker JD (2010) Novel weapons testing: are invasive plants more chemically defended than native plants? PLoS ONE 5:e10429. doi:10.1371/journal.pone.0010429

    PubMed Central  PubMed  Google Scholar 

  • Loydi A, Donath TW, Eckstein RL, Otte A (2015) Non-native species litter reduces germination and growth of resident forbs and grasses: allelopathic, osmotic or mechanical effects? Biol Invasions 17:581–595. doi:10.1007/s10530-014-0750-x

    Google Scholar 

  • Maguire JD (1962) Speed of germination-aid in selection and evaluation for seedling. Emerg Vigor Crop Sci 2:176–177. doi:10.2135/cropsci1962.0011183X0002000020033x

    Google Scholar 

  • Marques AR, Costa CF, Atman APF, Garcia QS (2014) Germination characteristics and seedbank of the alien species Leucaena leucocephala (Fabaceae) in Brazilian forest: ecological implications. Weed Res 54:576–583. doi:10.1111/wre.12107

    Google Scholar 

  • McCleary BV (1983) Enzymic interaction in the hydrolysis of galactomannan in germinating guar: the role of exo-β-mannanase. Phytochemistry 22:649–658. doi:10.1016/S0031-9422(00)86956-3

    CAS  Google Scholar 

  • Mello JIO, Barbedo CJ, Salatino A, Figueiredo-Ribeiro RCL (2010) Reserve carbohydrates and lipids from the seeds of four tropical tree species with different sensitivity to desiccation. Braz Arch Biol Techn 53:889–899. doi:10.1590/S1516-49789132010000400019

    CAS  Google Scholar 

  • Nickerson K, Flory SL (2015) Competitive and allelopathic effects of the invasive shrub Schinus terebinthifolius (Brazilian peppertree). Biol Invasions 17:555–564. doi:10.1007/s10530-014-0748-4

    Google Scholar 

  • Nóbrega RSA, De Paula AM, Boas AMV, Nóbrega CZ, Moreira FMS (2008) Morphological parameters of Sesbania virgata (Cav.) Pers and Anadenanthera peregrina (L.) seedlings cultivated in substrate fertilized with urban waste compost. Rev Arvore 32:597–607. doi:10.1590/S0100-67622008000300020

    Google Scholar 

  • Pierik R, Mommer L, Voesenek LACJ (2013) Molecular mechanisms of plant competition: neighbor detection and response strategies. Funct Ecol 27:841–853. doi:10.1111/1365-2435.12010

  • Popovici J, Bertrand C, Jacquemoud D, Bellvert F, Fernandez MP, Comte G, Piola F (2011) An allelochemical from Myrica gale with strong phytotoxic activity against highly invasive Fallopia x bohemica taxa. Molecules 16:2323–2333. doi:10.3390/molecules16032323

    CAS  PubMed Central  PubMed  Google Scholar 

  • Potomati A, Buckeridge MS (2002) Effect of abscisic acid on the mobilisation of galactomannan and embryo development of Sesbania virgata (Cav.) Pers. (Leguminosae-Faboideae). Rev Bras Bot 25:303–310. doi:10.1590/S0100-51284042002000300006

    CAS  Google Scholar 

  • Pott A, Pott VJ (1994) Plants of Pantanal. Center for Agricultural Research in the Pantanal, Corumbá, p 320

    Google Scholar 

  • Powell RG, Plattner RD, Suffness M (1990) Ocurrence of sesbanimide in seeds of toxic Sesbania species. Weed Sci 38:148–152

    CAS  Google Scholar 

  • Praxedes PG, Zerlin JK, Dias LO, Pessoni RAB (2011) A novel antifungal protein from seeds of Sesbania virgata (Cav.) Pers. (Leguminosae-Faboideae). Braz J Biol 71:687–692. doi:10.1590/S1519-69842011000400013

    CAS  PubMed  Google Scholar 

  • Reid JSG, Meier H (1973) Enzymic activities and galactomannan mobilisation in germinating seeds of fenugreek (Trigonella foenum-graecum L. Leguminosae). Secretion of α-galactosidase and β-mannosidase by the aleurone layer. Planta 112:301–308. doi:10.1007/BF00390303

    CAS  Google Scholar 

  • Schaffner U, Ridenour WM, Wolf VC, Bassett T, Muller C, Muller-scharer H, Sutherland S, Lortie CJ, Callaway RM (2011) Plant invasions, generalist herbivores, and novel defense weapons. Ecology 92:829–835. doi:10.1890/10-1230.1

    PubMed  Google Scholar 

  • Simões K, Du J, Kretzschmar FS, Broeckling CD, Stermitz F, Vivanco JM, Braga MR (2008) Phytotoxic catechin leached by seeds of the tropical weed Sesbania virgata. J Chem Ecol 34:681–687. doi:10.1007/s10886-008-9443-1

    PubMed  Google Scholar 

  • Singh HP, Batish DR, Pandher JK, Kohli RK (2003) Assessment of allelopathic properties of Parthenium hysterophorus residues. Agr Ecosyst Environ 95:537–541. doi:10.1016/S0167-8809(02)00202-5

    Google Scholar 

  • Souza VC, Andrade LA, Bezerra FTC, Fabricante JR, Feitosa RC (2011) Evaluation population of Sesbania virgata (Cav.) Pers. (Fabaceae Lindl.), on the banks of Paraíba river. Braz J Agric Sci 6:314–320. doi:10.5039/agraria.v6i2a926

    Google Scholar 

  • Teasdale JR, Rice CP, Cai G, Mangum RW (2012) Expression of allelopathy in the soil environment: soil concentration and activity of benzoxazinoid compounds released by rye cover crop residue. Plant Ecol 213:1893–1905. doi:10.1007/s11258-012-0057-x

    Google Scholar 

  • Thorpe AS, Thelen GC, Diaconu A, Callaway RM (2009) Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis. J Ecol 97:641–645. doi:10.1111/j.1365-2745.2009.01520.x

    Google Scholar 

  • Tonini PP, Lisboa CGS, Freschi L, Mercier H, Mazzoni-Viveiros SC, Buckeridge MS (2006) Effect of abscisic acid on galactomannan degradation and endo-β-mannanase activity in seeds of Sesbania virgata (Cav.) Pers. (Leguminosae). Trees Struct Funct 20:669–678. doi:10.1007/s00468-006-0082-2

    CAS  Google Scholar 

  • Tonini PP, Lisboa CGS, Silva CO, Mazzoni-Viveiros SC, Buckeridge MS (2007) Testa is involved in the control of storage mobilisation in seeds of Sesbania virgata (Cav.) Pers. a tropical legume tree from of the Atlantic Forest. Trees 21:13–21. doi:10.1007/s00468-006-0091-1

    CAS  Google Scholar 

  • Tonini PP, Purgatto E, Buckeridge MS (2010) Effects of abscisic acid, ethylene and sugars on the mobilization of storage proteins and carbohydrates in seeds of the tropical tree Sesbania virgata (Leguminosae). Ann Bot 106:607–616. doi:10.1093/aob/mcq15

    CAS  PubMed Central  PubMed  Google Scholar 

  • Van Staden J, Grobbelaar N (1995) The effect of sesbanimide and Sesbania seed extract on germination and seedling growth of a number of plant species. Environ Exp Bot 35:321–329. doi:10.1016/0098-8472(95)00005-0

    Google Scholar 

  • Veronesi MB (2013) Avaliação da tolerância de duas espécies nativas às fitotoxinas exsudadas por Sesbania virgata (Cav.) Pers. Dissertation, Institute of Botany

  • Wang C-M, Li T-C, Jhan Y-L, Weng J-H, Chou C-H (2013) The impact of microbial biotransformation of catechin in enhancing the allelopathic effects of Rhododendron formosanum. PLoS ONE 8(12):e85162. doi:10.1371/journal.pone.0085162

    PubMed Central  PubMed  Google Scholar 

  • Weidenhamer JD, Romeo JT (2005) Allelopathy as a mechanism for resisting invasion: the case of Polygonella myriophylla. Birkhauser, Basel, pp 167–177. doi:10.1007/3-7643-7380-6-10

    Book  Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19. doi:10.1016/S0305-1978(03)00085-1

    CAS  PubMed  Google Scholar 

  • Xuan TD, Elzaawely AA, Deba F, Fukuta M, Tawata S (2006) Mimosine in Leucaena as a potent bio-herbicide. Agron Sustain Dev 26:89–97. doi:10.1051/agro:2006001

    CAS  Google Scholar 

  • Ye N, Zhu G, Liu Y, Zhang A, Li Y, Liu R, Shi L, Jia L, Zhang J (2011) Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. J Exp Bot 26:1–14. doi:10.1093/jxb/err336

    Google Scholar 

  • Zanandrea I, Alves JD, Deuner S, Goulart PFP, Henrique PC, Silveira NM (2010) Tolerance of Sesbania virgata plants to flooding. Aust J Bot 57:661–669. doi:10.1071/BT09144

    Google Scholar 

  • Zenni RD, Ziller SR (2011) An overview of invasive plants in Brazil. Braz J Bot 34:431–446. doi:10.1590/S0100-84042011000300016

    Google Scholar 

  • Zhao H, Peng S, Chen Z, Wu Z, Zhou G, Wang X, Qiu Z (2011) Abscisic acid in soil facilitates community succession in three forests in China. J Chem Ecol 37:785–793. doi:10.1007/s10886-011-9970-z

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Luciano Freschi from University of São Paulo for the quantification of abscisic acid, Dr. Nelson Augusto dos Santos Junior for help with statistical analysis and critical review of the manuscript, and Dr. Maria Angela Machado de Carvalho for language revision and valuable suggestions. Thanks are due to Fundação de Amparo à Pesquisa de São Paulo—FAPESP for the fellowship to Daiane S.B. Mignoni (Proc 2013/03978-1) and for the financial support (Proc 2012/16332-0). Marcia R. Braga also thanks the Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq for the researcher fellowship and research grant (501965/2010-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcia Regina Braga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 183 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mignoni, D.S.B., Simões, K. & Braga, M.R. Potential allelopathic effects of the tropical legume Sesbania virgata on the alien Leucaena leucocephala related to seed carbohydrate metabolism. Biol Invasions 20, 165–180 (2018). https://doi.org/10.1007/s10530-017-1524-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1524-z

Keywords

Navigation