Skip to main content

Advertisement

Log in

No rest for the laurels: symbiotic invaders cause unprecedented damage to southern USA forests

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Laurel wilt is an extraordinarily destructive exotic tree disease in the southeastern United States that involves new-encounter hosts in the Lauraceae, an introduced vector (Xyleborus glabratus) and pathogen symbiont (Raffaelea lauricola). USDA Forest Service Forest Inventory and Analysis data were used to estimate that over 300 million trees of redbay (Persea borbonia sensu lato) have succumbed to the disease since the early 2000s (ca 1/3 of the pre-invasion population). In addition, numerous native shrub and tree species in the family are susceptible and  threatened in the Western Hemisphere. Genetic markers were used to test the hypothesis that the vector and pathogen entered North America as a single introduction. With a portion of the cytochrome oxidase I gene, a single X. glabratus haplotype was detected in the USA. Similarly, Amplified Fragment Length Polymorphisms indicated that 95% (54 of 57) of the isolates of R. lauricola that were examined were of a single clonal genotype; only minor variation was detected in three polymorphic isolates. Similar levels of disease developed after swamp bay (P. palustris) was inoculated with each of the four genotypes of R. lauricola. It is proposed that a single founding event is responsible for the laurel wilt epidemic in the United States.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Photos by: a Chip Bates, Georgia Forestry Commission. b Jiri Hulcr, University of Florida

Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anagostakis SL (1987) Chestnut blight: the classical problem of an introduced pathogen. Mycologia 79:22–37

    Google Scholar 

  • Anderson PK, Cuningham AA, Patel NG, Morales FJ, Epstein PR, Daszak P (2004) Emerging infectious diseases of plants: pathogen pollution, climate change and agrotechnology drivers. Trends Ecol Evol 19:535–544

    Article  PubMed  Google Scholar 

  • Bates CA, Fraedrich S, Harrington T, Cameron RS, Menard RD, Best GS (2013) First report of laurel wilt, caused by Raffaelea lauricola, on sassafras (Sassafras albidum) in Alabama. Plant Dis 97:668

    Article  Google Scholar 

  • Bechtold WA, Scott CT (2005) The Forest Inventory and Analysis plot design. In: Bechtold WA, Patterson PL (eds) The enhanced Forest Inventory and Analysis program—national sampling design and estimation procedures. General Technical Report SRS-80. USDA, Forest Service, Southern Research Station. http://www.srs.fs.usda.gov/pubs/gtr/gtr_srs080/gtr_srs080.pdf. Accessed 28 Sep 2016

  • Boyd LL, Freer-Smith Ph, Gilligan CA, Godfray HCJ (2013) The consequences of tree pests and diseases for ecosystem services. Science 342:1235773

    Article  CAS  PubMed  Google Scholar 

  • Brasier CM (2001) Rapid evolution of introduced plant pathogens via interspecific hybridization. Hybridization is leading to rapid evolution of the Dutch elm disease and other fungal plant pathogens. Bioscience 51:123–133

    Article  Google Scholar 

  • Cameron RS, Hanula J, Fraedrich SW, Bates C (2015) Progression of laurel wilt disease within redbay and sassafras populations in southeast Georgia. Southeast Nat 14:650–674

    Article  Google Scholar 

  • Campbell L, Madden LV (1990) Introduction to Plant Disease Epidemiology. Wiley, NY

    Google Scholar 

  • Campbell AS, Ploetz RC, Dreaden TJ, Kendra PE, Montgomery WS (2017) Geographic variation in mycangial communities of Xyleborus glabratus. Mycologia 108:657–667

    Article  Google Scholar 

  • Carrillo D, Duncan RE, Ploetz JN, Campbell AF, Ploetz RC, Peña JE (2014) Lateral transfer of a phytopathogenic symbiont among native and exotic ambrosia beetles. Plant Pathol 63:54–62

    Article  Google Scholar 

  • Chupp AD, Battaglia LL (2014) Potential for host shifting in Papilio palamedes following invasion of laurel wilt disease. Biol Invasions 16:2639–2651

    Article  Google Scholar 

  • Chupp AD, Battaglia LL, Schauber EM, Sipes SD (2015) Orchid-pollinator interactions and potential vulnerability to potential biological invasions. AoB Plants 7:plv099

    Article  PubMed  PubMed Central  Google Scholar 

  • Cognato AI, Hulcr J, Dole SA, Jordal BH (2011a) Phylogeny of haplo–diploid, fungus-growing ambrosia beetles (Curculionidae: Scolytinae: Xyleborini) inferred from molecular and morphological data. Zool Scr 40:174–186

    Google Scholar 

  • Cognato AI, Olson RO, Rabaglia RJ (2011b) An Asian ambrosia beetle, Xylosandrus amputatus (Blandford) (Curculionidae: Scolytinae: Xyleborini), discovered in Florida, USA. Coleops Bull 65:43–45

    Article  Google Scholar 

  • Cognato AI, Hoebeke ER, Kajimura H, Smith S (2015) History of the exotic ambrosia beetles Euwallacea interjectus (Blandford) and E. validus (Eichhoff) (Coleoptera: Curculionidae: Xyleborini) in the United States of America. J Econ Entomol 108:129–1135

    Article  Google Scholar 

  • Dole SA, Jordal BH, Cognato AI (2010) Polyphyly of Xylosandrus Reitter inferred from nuclear and mitochondrial genes. Mol Phylogenet Evol 53:773–782

    Article  Google Scholar 

  • Drake JM, Lodge DM (2006) Allee effects, propagule pressure and the probability of establishment: risk analysis for biological invasions. Biol Invasions 8:65–375

    Google Scholar 

  • Dreaden TJ, Davis JM, Harmon CL, Ploetz RC, Palmateer AJ, Soltis PS, Smith JA (2014) Development of multilocus PCR assays for Raffaelea lauricola, causal agent of laurel wilt disease. Plant Dis 98:379–383

    Article  CAS  Google Scholar 

  • Dreaden TJ, Campbell AS, Gonzalez-Benecke CA, Ploetz RC, Smith JA (2017) Response of swamp bay, Persea palustris, and redbay, P. borbonia, to Raffaelea lauricola spp. isolated from Xyleborus glabratus. For Pathol 47:e12288

    Article  Google Scholar 

  • Duncan RP (2016) How propagule size and environmental suitability jointly determine establishment success: a test using dung beetle introductions. Biol Invasions 18:985–996

    Article  Google Scholar 

  • Duran A, Gryzenhout M, Drenth A, Slippers B, Ahumada R, Wingfield BD, Wingfield MJ (2010) AFLP analysis reveals a clonal population of Phytophthora pinifolia in Chile. Fungal Biol 114:746–752

    Article  PubMed  Google Scholar 

  • Engering A, Hogerwerf L, Slingenbergh J (2013) Pathogen-host-environment interplay and disease emergence. Emerg Microbe Infect 2:e5

    Article  CAS  Google Scholar 

  • Evans JP, Scheffers BR, Hess M (2013) Effect of laurel wilt invasion on redbay populations in a maritime forest community. Biol Invasions 16:1581–1588

    Article  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  CAS  PubMed  Google Scholar 

  • Formby JP, Krishnan N, Riggins JJ (2013) Supercooling in the redbay ambrosia beetle (Coleoptera: Curculionidae). Fla Entomol 96:1530–1540

    Article  Google Scholar 

  • Fraedrich SW, Harrington TC, Rabaglia RJ, Ulyshen MD, Hanula JL, Eickwort JM, Miller DR (2008) A fungal symbiont of the redbay ambrosia beetle causes a lethal wilt in redbay and other Lauraceae in the southeastern United States. Plant Dis 92:215–224

    Article  Google Scholar 

  • Fraedrich SW, Harrington TC, Bates CA, Johnson J, Reid LS, Best GS, Leininger TD, Hawkins TS (2011) Susceptibility to laurel wilt and disease incidence in two rare plant species, pondberry and pondspice. Plant Dis 95:1056–1062

    Article  Google Scholar 

  • Fraedrich SW, Harrington TC, Best GS (2015) Xyleborus glabratus attacks and systemic colonization by Raffaelea lauricola associated with dieback of Cinnamomum camphora in the southeastern United States. For Pathol 45:60–70

    Article  Google Scholar 

  • Germain-Aubrey CC, Nelson C, Soltis DE, Soltis PA, Gitzendanner MA (2016) Are microsatellite fragment lengths useful for population-level studies? The case of Polygala lewtonii (Polygalaceae). Appl Plant Sci 4:1500115

    Article  Google Scholar 

  • Grosholz ED (2005) Recent biological invasion may hasten invasional meltdown by accelerating historical introductions. Proc Nat Acad Sci USA 102:1088–1091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grünwald NJ, Garbelotto M, Goss EM, Heungens K, Prospero S (2012) Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol 20:131–138

    Article  PubMed  Google Scholar 

  • Hanula JL, Sullivan B (2008) Manuka oil and phoebe oil are attractive baits for Xyleborus glabratus (Coleoptera: Scolytinae), the vector of laurel wilt. Environ Entomol 37:1403–1409

    Article  CAS  PubMed  Google Scholar 

  • Harrington TC (1981) Cycloheximide sensitivity as a taxonomic character in Ceratocystis. Mycologia 73:1123–1129

    Article  CAS  Google Scholar 

  • Harrington TC, Fraedrich SW (2010) Quantification of propagules of the laurel wilt fungus and other mycangial fungi from the redbay ambrosia beetle, Xyleborus glabratus. Phytopathology 100:118–1123

    Article  Google Scholar 

  • Harrington TC, Fraedrich SW, Aghayeva DN (2008) Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 104:399–404

    Google Scholar 

  • Harrington TC, Yun HY, Lu SS, Goto H, Fraedrich SW (2011) Isolations from the redbay ambrosia beetle, Xyleborus glabratus, confirm that the laurel wilt pathogen, Raffalea lauricola, originated in Asia. Mycologia 103:1028–1036

    Article  PubMed  Google Scholar 

  • Herms DA, McCullough DG (2014) Emerald ash borer invasion of North America: history, biology, ecology, impacts and management. Annu Rev Entomol 59:13–30

    Article  CAS  PubMed  Google Scholar 

  • Hicke JA, Jenkins JC, Ojima DS, Ducey M (2007) Spatial patterns of forest characteristics in the western United States derived from inventories. Ecol Appl 17:2387–2402

    Article  PubMed  Google Scholar 

  • Hoegger PJ, Rigling D, Holdenrieder O, Heiniger U (2000) Genetic structure of newly established Cryphonectria parasitica. Mycol Res 104:1108–1116

    Article  CAS  Google Scholar 

  • Hughes MA, Smith JA, Ploetz RC, Kendra PE, Mayfield AE III, Hanula JL, Hulcr J, Stelinski LL, Cameron S, Riggins JJ, Carrillo D, Rabaglia R, Eickwort J, Pernas T (2015a) Recovery plan for laurel wilt on redbay and other forest species caused by Raffaelea lauricola and disseminated by Xyleborus glabratus. Plant Health Prog. doi:10.1094/PHP-RP-15-0017

    Google Scholar 

  • Hughes MA, Inch SA, Ploetz RC, Er HL, van Bruggen AHC, Smith JA (2015b) Responses of swamp bay, Persea palustris, and avocado, Persea americana, to various concentrations of the laurel wilt pathogen, Raffaelea lauricola. For Pathol 45:111–119

    Article  Google Scholar 

  • Hulcr J, Dunn RR (2011) The sudden emergence of pathogenicity in insect-fungus symbioses threatens naive forest ecosystems. Proc R Soc B 278:2866–2873

    Article  PubMed  PubMed Central  Google Scholar 

  • Hulcr J, Lou QZ (2013) The redbay ambrosia beetle (Coleoptera: Curculionidae) prefers Lauraceae in its native range: records from the Chinese National Insect Collection. Fla Entomol. 96:1595–1596

    Article  Google Scholar 

  • Ivors KL, Hayden KJ, Bonants PJM, Rizzo DM, Garbelotto M (2004) AFLP and phylogenetic analysis of North American and European populations of Phytophthora ramorum. Mycol Res 108:378–392

    Article  CAS  PubMed  Google Scholar 

  • Jackson MC (2015) Interactions among multiple invasive animals. Ecology 96:2035–2041

    Article  CAS  PubMed  Google Scholar 

  • Kim M-S, Klopfenstein NB, Hanna JW, McDonald GI (2006) Characterization of North American Armillaria species: genetic relationships determined by ribosomal DNA sequences and AFLP markers. For. Pathol 36:145–164

    Article  Google Scholar 

  • Kirkendal LR, Biedermann PHW, Jordal BJ (2015) Evolution and diversity of bark and ambrosia beetles. In: Vega FE, Hofstetter RW (eds) Bark beetles: biology and ecology of native and invasive species, 1st edn. Elsevier, San Diego, pp 85–156

    Chapter  Google Scholar 

  • Koch FH, Smith WD (2008) Spatio-temporal analysis of Xyleborus glabratus (Coleoptera: Circulionidae: Scolytinae) invasion in eastern US forests. Environ Entomol 37:442–452

    Article  CAS  PubMed  Google Scholar 

  • Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends Ecol Evol 16:199–204

    Article  PubMed  Google Scholar 

  • Kubisiak TL, Anderson CL, Amerson ML, Smith JA, Davis JM, Nelson CD (2011) A genomic map enriched for markers linked to Avr1 in Cronartium quercum f.sp. fusiforme. Fungal Genet Biol 48:266–274

    Article  CAS  PubMed  Google Scholar 

  • Liebhold AM, Tobin PC (2008) Population ecology of insect invasions and their management. Annu Rev Entomol 53:387–408

    Article  CAS  PubMed  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    Article  PubMed  Google Scholar 

  • Mayfield AE III, Smith JA, Hughes MA, Dreaden TJ (2008) First report of laurel wilt disease caused by a Raffaelea sp. on avocado in Florida. Plant Dis 92:976

    Article  Google Scholar 

  • McDonald BA (1997) The population genetics of fungi: tools and techniques. Phytopathology 87:448–453

    Article  CAS  PubMed  Google Scholar 

  • McRoberts RE (2005) The enhanced Forest Inventory and Analysis program. In: Bechtold WA, Patterson PL (eds) The enhanced Forest Inventory and Analysis program—national sampling design and estimation procedures General Technical Report SRS-80. USDA, Forest Service, Southern Research Station. http://www.srs.fs.usda.gov/pubs/gtr/gtr_srs080/gtr_srs080.pdf. Accessed 28 Sep 2016

  • Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117

    Article  CAS  PubMed  Google Scholar 

  • Mosquera M, Evans EA, Ploetz R (2015) Assessing the profitability of avocado production in south Florida in the presence of laurel wilt. Theor Econ Lett 5:343–356

    Article  Google Scholar 

  • Noss RF, Platt WJ, Sorrie BA, Weakley AS, Means DB, Costanza J, Peet RK (2015) How global biodiversity hotspots many go unrecognized: lessons from the North American Coastal Plain. Divers Distrib 21:236–244

    Article  Google Scholar 

  • Pautasso M, Aas G, Queloz V, Holdenrieder O (2013) European ash (Fraxinus excelsior) dieback—a conservation biology challenge. Biol Conserv 158:37–49

    Article  Google Scholar 

  • Pautasso M, Schlegel M, Holdelrieder O (2015) Forest health in a changing world. Microb Ecol 69:826–842

    Article  PubMed  Google Scholar 

  • Ploetz RC, Konkol J (2013) First report of gulf licaria, Licaria triandra, as a suscept of laurel wilt. Plant Dis 97:1248

    Article  Google Scholar 

  • Ploetz RC, Hulcr J, Wingfield MJ, de Beer ZW (2013) Destructive tree diseases associated with ambrosia and bark beetles: black swan events in tree pathology? Plant Dis 95:856–872

    Article  Google Scholar 

  • Ploetz RC, Thant YY, Hughes MA, Dreaden TJ, Konkol JL, Kyaw AT, Smith JA, Harmon CL (2016) Laurel wilt, caused by Raffaelea lauricola, is detected for the first time outside of the southeastern United States. Plant Dis 100:2166

    Article  Google Scholar 

  • Ploetz RC, Konkol JL, Pérez-Martínez JM, Fernandez R (2017a) Management of laurel wilt of avocado, caused by Raffaelea lauricola. Eur J Plant Pathol. doi:10.1007/s10658-017-1173-1

    Google Scholar 

  • Ploetz RC, Kendra PE, Choudhury RA, Rollins JA, Campbell A, Garrett K, Hughes M, Dreaden T (2017b) Laurel wilt in natural and agricultural ecosystems: understanding the drivers and scales of complex pathosystems. Forests 8:48. doi:10.3390/f8020048

    Article  Google Scholar 

  • Rabaglia RJ, Dole SA, Cognato AI (2006) Review of American Xyleborina (Coleoptera: Curculionidae: Scolytinae) occurring north of Mexico, an illustrated key. Ann Entomol Soc Am 99:1034–1056

    Article  Google Scholar 

  • Rassati D, Faccoli M, Haack RA, Rabaglia RJ, Toffolo EP, Battisti A, Marini L (2016) Bark and ambrosia beetles show different invasions patterns in the USA. PLoS ONE 11(7):e0158519

    Article  PubMed  PubMed Central  Google Scholar 

  • Robertson JL, Wyatt R (1990) Evidence for pollination ecotypes in the yellow-fringed orchid, Platanthera ciliaris. Evolution 44:121–133

    Article  PubMed  Google Scholar 

  • Rodgers L, Derksen A, Pernas T (2014) Expansion and impact of laurel wilt in the Florida Everglades. Fla Entomol 97:1247–1250

    Article  Google Scholar 

  • Roman J, Darling J (2007) Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol 22:454–464

    Article  PubMed  Google Scholar 

  • Rossetto M, McNally J, Henry RJ (2002) Evaluating the potential of ssr flaking regions for examining taxonomic relationships in the Vitaceae. Theor Appl Genet 104:61–66

    Article  CAS  PubMed  Google Scholar 

  • Scott CT, Bechtold WA, Reams GA, Smith WD, Westfall JA, Hansen MH, Moisen GG (2005) Sample-based estimators used by the Forest Inventory and Analysis national information management system. In: Bechtold WA, Patterson PL (eds) The enhanced Forest Inventory and Analysis program—national sampling design and estimation procedures. General Technical Report SRS-80. USDA, Forest Service, Southern Research Station. http://www.srs.fs.usda.gov/pubs/gtr/gtr_srs080/gtr_srs080.pdf. Accessed 17 Jan 2017

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629

    Article  PubMed  Google Scholar 

  • Shaw JD, Steed BE, DeBlander LT (2005) Forest Inventory and Analysis (FIA) annual inventory answers the question: what is happening to pinyon-juniper woodlands? J For 103:280–285

    Google Scholar 

  • Shearman TM, Wang GG, Bridges WC (2015) Population dynamics of redbay (Persea borbonia) after laurel wilt disease: an assessment based on forest inventory and analysis data. Biol Invasions 17:1371–1382

    Article  Google Scholar 

  • Simberloff D (2006) Invasional meltdown 6 years later: important phenomenon, unfortunate metaphor, or both? Ecol Lett 9:912–919

    Article  PubMed  Google Scholar 

  • Smith JA, Mount L, Mayfield AE III, Bates BA, Lamborn WA, Fraedrich SW (2009) First report of laurel wilt disease caused by Raffaelea lauricola on camphor in Florida and Georgia. Plant Dis 93:198

    Article  Google Scholar 

  • Smith JA, O’Donnell K, Mount LL, Peacock K, Trulock A, Spector T, Cruse-Sanders J, Determann R (2011) A novel Fusarium species causes a canker disease of the critically endangered conifer, Torreya taxifolia. Plant Dis 95:633–639

    Article  Google Scholar 

  • Spiegel KS, Leege LM (2013) Impacts of laurel wilt disease on redbay (Persea borbonia (L.) Spreng.) population structure and forest communities in the coastal plain of Georgia, USA. Biol Invasions 15:2467–2487

    Article  Google Scholar 

  • Trumbore S, Brando P, Hartmann H (2015) Forest health and global change. Science 349:814–818

    Article  CAS  PubMed  Google Scholar 

  • Vose JM, Wear DN, Mayfield AE III, Nelson CD (2013) Hemlock wooly adelgid in the southern Appalachians: control strategies, ecological impacts, and potential management response. For Eco Manag 291:209–219

    Article  Google Scholar 

  • Wingfield MJ, Garnas JR, Hajek A, Hurley BP, de Beer ZW, Taerum SJ (2016) Novel and co-evolved associations between insects and microorganisms as drivers of forest pestilence. Biol Invasions 18:1045–1056

    Article  Google Scholar 

  • Wuest CE, Harrington TC, Fraedrich SW, Yun H-Y, Lu S-S (2017) Genetic variation in native populations of the laurel wilt pathogen, Raffaelea lauricola, in Taiwan and Japan and the introduced population in the United States. Plant Dis 101:619–628

    Article  Google Scholar 

Download references

Acknowledgements

We thank John Coulston (USDA Forest Service) and Bill Smith (USDA Forest Service, ret.) for assistance with FIA data analyses, Stephen Fraedrich (USDA Forest Service) for donating fungal isolates, Kathy Smith (USDA Forest Service) for assistance with molecular techniques, and our three anonymous pre-submission manuscript reviewers. Funding was provided by the USDA Forest Service Region 8 Forest Health Protection and STDP programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Hughes.

Additional information

M. A. Hughes and J. J. Riggins have contributed equally to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 20 kb)

Supplementary material 2 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hughes, M.A., Riggins, J.J., Koch, F.H. et al. No rest for the laurels: symbiotic invaders cause unprecedented damage to southern USA forests. Biol Invasions 19, 2143–2157 (2017). https://doi.org/10.1007/s10530-017-1427-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-017-1427-z

Keywords

Navigation